XenLoop: A Transparent High Performance Inter-VM
Network Loopback

Jian Wang
Computer Science
Binghamton University
Binghamton, NY, USA

ABSTRACT

Advances in virtualization technology have focused mainly
on strengthening the isolation barrier between virtual ma-
chines (VMs) that are co-resident within a single physical
machine. At the same time, a large category of communica-
tion intensive distributed applications and software compo-
nents exist, such as web services, high performance grid ap-
plications, transaction processing, and graphics rendering,
that often wish to communicate across this isolation bar-
rier with other endpoints on co-resident VMs. State of the
art inter-VM communication mechanisms do not adequately
address the requirements of such applications. TCP/UDP
based network communication tends to perform poorly when
used between co-resident VMs, but has the advantage of be-
ing transparent to user applications. Other solutions exploit
inter-domain shared memory mechanisms to improve com-
munication latency and bandwidth, but require applications
or user libraries to be rewritten against customized APIs —
something not practical for a large majority of distributed
applications. In this paper, we present the design and im-
plementation of a fully transparent and high performance
inter-VM network loopback channel, called XenLoop, in the
Xen virtual machine environment. XenLoop does not sac-
rifice user-level transparency and yet achieves high commu-
nication performance between co-resident guest VMs. Xen-
Loop intercepts outgoing network packets beneath the net-
work layer and shepherds the packets destined to co-resident
VMs through a high-speed inter-VM shared memory channel
that bypasses the virtualized network interface. Guest VMs
using XenLoop can migrate transparently across machines
without disrupting ongoing network communications, and
seamlessly switch between the standard network path and
the XenLoop channel. XenLoop can operate in both bridged
mode and routed mode configurations of Xen. Evaluations
using a number of unmodified benchmarks show that Xen-
Loop reduces the inter-VM round trip latency by up to a
factor of 5 and increases bandwidth by up to a factor of 6.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

HPDC' 08, June 23-27, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-997-5/08/06 ...$5.00.

Kwame-Lante Wright
Electrical Engineering
The Cooper Union
New York, NY, USA

jianwang@cs.binghamton.edu wright2@cooper.edu

Kartik Gopalan
Computer Science
Binghamton University
Binghamton, NY, USA

kartik@cs.binghamton.edu

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Management—

Network communication; D.4.7 [Operating Systems]|: Or-
ganization and Design— Distributed System

General Terms

Design, Experimentation, Performance

Keywords

Virtual machine, Inter-VM communication, Xen

1. INTRODUCTION

Virtual Machines (VMs) are rapidly finding their way into
data centers, enterprise service platforms, high performance
computing (HPC) clusters, and even end-user desktop envi-
ronments. The primary attraction of VMs is their ability to
provide functional and performance isolation across applica-
tions and services that share a common hardware platform.
VMs improve the system-wide utilization efficiency, provide
live migration for load balancing, and lower the overall op-
erational cost of the system.

Hypervisor (also sometimes called the virtual machine
monitor) is the software entity which enforces isolation across
VMs residing within a single physical machine, often in co-
ordination with hardware assists and other trusted software
components. For instance, the Xen [1] hypervisor runs at
the highest system privilege level and coordinates with a
trusted VM called Domain 0 (or Dom0) to enforce isolation
among unprivileged guest VMs. Enforcing isolation is an
important requirement from the viewpoint of security of in-
dividual software components. At the same time enforcing
isolation can result in significant communication overheads
when different software components need to communicate
across this isolation barrier to achieve application objectives.
For example, a distributed HPC application may have two
processes running in different VMs that need to communi-
cate using messages over MPI libraries. Similarly, a web
service running in one VM may need to communicate with
a database server running in another VM in order to satisfy
a client transaction request. Or a graphics rendering appli-
cation in one VM may need to communicate with a display
engine in another VM. Even routine inter-VM communica-
tion, such as file transfers or heartbeat messages may need
to frequently cross this isolation barrier.

In all the above examples, when the VM endpoints re-
side on the same physical machine, ideally we would like

Inter Netfront/ | XenLoop
Machine | Netback
Flood Ping 101 140 28
RTT (us)
netperf
TCP_RR 9387 10236 28529
(trans/sec)
netperf
UDP_RR 9784 12600 32803
(trans/sec)
netperf
TCP_STREAM 941 2656 4143
(Mbps)
netperf
UDP_STREAM 710 707 4380
(Mbps)
Imbench
TCP 848 1488 4920
(Mbps)

Table 1: Latency and bandwidth comparison.

to minimize the communication latency and mazimize the
bandwidth, without having to rewrite existing applications
or communication libraries. Most state of the art inter-
VM communication mechanisms provide either application
transparency, or performance, but not both. For exam-
ple, the Xen platform enables applications to transparently
communicate across VM boundary using standard TCP/IP
sockets. However, all network traffic from the sender VM
to receiver VM is redirected via DomO, resulting in a sig-
nificant performance penalty. To illustrate this overhead,
columns 1 and 2 in Table 1 compare the performance of the
original network communication path between two different
machines across a 1Gbps Ethernet switch versus that be-
tween two Xen VMs on the same physical machine (labeled
“Netfront /Netback”). Flood Ping RTT refers to the aver-
age ICMP ECHO request/reply latency. Rows 2-5 use the
netperf [12] benchmark. TCP_RR and UDP_RR report av-
erage number of 1-byte request-response transactions/sec.
TCP_STREAM and UDP_STREAM report average band-
width. Row 6 shows bandwidth performance using the Im-
bench [7] benchmark. One can see that in all cases, except
TCP_STREAM, original inter-VM communication perfor-
mance is only marginally better or even slightly worse than
inter-machine performance, although one might expect a
significantly better communication performance within the
same machine.

To improve inter-VM communication performance, prior
works [19, 4, 5] have exploited the facility of inter-domain
shared memory provided by the Xen hypervisor, which is
more efficient than traversing the network communication
path via Dom0. With [19, 4], network applications and/or
communication libraries need to be rewritten against new

APIs and system calls, thus giving up user-level transparency.

With [5], guests’ operating system code needs to be mod-
ified and recompiled, giving up kernel-level transparency.
With [13], co-resident VMs map each other’s kernel address
space entirely, giving up VM isolation.

In this paper, we present the design and implementation
of a fully transparent and high performance inter-VM net-

work loopback channel called XenLoop that permits di-
rect network traffic exchange between two VMs in the same
machine without the intervention of a third software com-
ponent, such as Dom0, along the data path. XenLoop op-
erates transparently beneath existing socket interfaces and
libraries. Consequently, XenLoop allows existing network
applications and libraries to benefit from improved inter-
VM communication without the need for any code mod-
ification, recompilation, or relinking. Additionally, Xen-
Loop does not require any changes to either the guest op-
erating system code or the Xen hypervisor since it is im-
plemented as a self-contained Linux kernel module. Guest
VMs using XenLoop can automatically detect the identity of
other co-resident VMs and setup/teardown XenLoop chan-
nels on-the-fly as needed. XenLoop can operate in both
bridged mode and routed mode configurations of Xen, en-
abling high-speed communication between co-resident VMs
in either same or different logical subnets. Guests can even
migrate from one machine to another without disrupting on-
going network communication sessions, seamlessly switching
the network traffic between the standard network path and
the XenLoop channel. XenLoop can intercept outgoing net-
work traffic either below the IP layer or below the network
socket layer, providing a tradeoff between performance and
design complexity. Our current prototype focuses on IPv4
traffic, although XenLoop can be extended easily to support
other protocol types.

A snapshot of performance results for XenLoop in column
3 of Table 1 shows that, compared to original network data
path, XenLoop reduces the inter-VM round-trip latency by
up to a factor of 5 and bandwidth by up to a factor of 6.
The XenLoop source code is publicly available [18].

The rest of this paper is organized as follows. Section 2
covers relevant background for network datapath processing
and the shared memory facility in Xen. Section 3 presents
the design and implementation of XenLoop and also dis-
cusses a few design alternatives. Section 4 presents the de-
tailed performance evaluation of XenLoop. Section 5 dis-
cusses related work and Section 6 summarizes our contribu-
tions and outlines future improvements.

2. XEN NETWORKING BACKGROUND

Xen virtualization technology provides close to native ma-
chine performance through the use of para-virtualization — a
technique by which the guest OS is co-opted into reducing
the virtualization overhead via modifications to its hardware
dependent components. In this section, we review the rel-
evant background of the Xen networking subsystem as it
relates to the design of XenLoop. Xen exports virtualized
views of network devices to each guest OS, as opposed to
real physical network cards with specific hardware make and
model. The actual network drivers that interact with the
real network card can either execute within Dom0 — a priv-
ileged domain that can directly access all hardware in the
system — or within Isolated Driver Domains (IDD), which
are essentially driver specific virtual machines. IDDs require
the ability to hide PCI devices from Dom0 and expose them
to other domains. In the rest of the paper, we will use the
term driver domain to refer to either Dom0 or the IDD that
hosts the native device drivers.

The physical network card can be multiplexed among mul-
tiple concurrently executing guest OSes. To enable this mul-
tiplexing, the privileged driver domain and the unprivileged

GUEST VM 1 NETWORK DRIVER DOMAIN GUEST VM 2
) (1 DESCRIPTOR ()
DESCRIPTOR RINGS
RINGS
VNIC RX X VNIC
FRONT FRONT
END RX END
™ H—>
NATIVE NIC DRIVER
RANT A GRANT
© TABLE
TABLE
[sAFE HW 1/H
L ~ XEN HYPERVISOR

[PHYysicaL nic)

Figure 1: Split Netfront-Netback driver architecture in Xen. Network traffic between VM1 and VM2 needs

to traverse via the software bridge in driver domain.

guest domains (DomU) communicate by means of a split
network-driver architecture shown in Figure 1. The driver
domain hosts the backend of the split network driver, called
netback, and the DomU hosts the frontend, called netfront.
The netback and netfront interact using high-level network
device abstraction instead of low-level network hardware
specific mechanisms. In other words, a DomU only cares
that it is using a network device, but doesn’t worry about
the specific type of network card.

Netfront and netback communicate with each other using
two producer-consumer ring buffers — one for packet recep-
tion and another for packet transmission. The ring buffers
are nothing but a standard lockless shared memory data
structure built on top of two primitives — grant tables and
event channels. Grant table can be used for bulk data trans-
fers across domain boundaries by enabling one domain to al-
low another domain to access its memory pages. The access
mechanism can consist of either sharing or transfer of pages.
The primary use of the grant table in network I/O is to pro-
vide a fast and secure mechanism for unprivileged domains
(DomUs) to receive indirect access to the network hardware
via the privileged driver domain. They enable the driver do-
main to set up a DMA based data transfer directly to/from
the system memory of a DomU rather than performing the
DMA to/from driver domain’s memory with the additional
copying of the data between DomU and driver domain.

The grant table can be used to either share or transfer
pages between the DomU and driver domain. For exam-
ple, the frontend of a split driver in DomU can notify the
Xen hypervisor (via the gnttab_grant_foreign_access hy-
percall) that a memory page can be shared with the driver
domain. The DomU then passes a grant table reference
via the event channel to the driver domain, which directly
copies data to/from the memory page of the DomU. Once
the page access is complete, the DomU removes the grant
reference (via the gnttab_end_foreign_access call). Such
page sharing mechanism is useful for synchronous I/O op-

erations, such as sending packets over a network device or
issuing read/write to a block device.

At the same time, network devices can receive data asyn-
chronously, that is, the driver domain may not know the
target DomU for an incoming packet until the entire packet
has been received and its header examined. In this situation,
the driver domain first DM As the packet into its own mem-
ory page. Next, depending on whether the received packet is
small, the driver domain can choose to copy the entire packet
to the DomU’s memory across a shared page. Alternatively,
if the packet is large, the driver domain notifies the Xen
hypervisor (via the gnttab_grant_foreign_transfer call)
that the page can be transferred to the target DomU. The
DomU then initiates a transfer of the received page from the
driver domain and returns a free page back to the hypervi-
sor. Excessive switching of a CPU between domains can
negatively impact the performance due to increase in TLB
and cache misses. An additional source of overhead can be
the invocation of frequent hypercalls (equivalent of system
calls for the hypervisor) in order to perform page sharing or
transfers. Security considerations may also force a domain
to zero a page being returned in exchange of a page trans-
fer, which can negate the benefits of page transfer to a large
extent [8].

3. DESIGN AND IMPLEMENTATION

The two basic design objectives behind XenLoop are (a)
user-level transparency and (b) significantly higher inter-
VM communication performance than via netfront-netback.
In this section, we describe the detailed design choices and
tradeoffs in implementing XenLoop, justify our design deci-
sions, and present implementation details.

3.1 XenLoop Modulein Guest VM

Here we will discuss an overview of XenLoop architec-
ture shown in Figure 2 and will discuss each component in
greater detail in the following subsections. Each guest VM

hosts a self-contained XenLoop kernel module which inserts
itself as a thin layer in the network protocol stack between
the network layer and the link layer. The XenLoop module
contains a guest-specific software bridge that is capable of
intercepting every outgoing packet from the network layer
in order to inspect its header to determine the packet’s des-
tination. Linux provides a netfilter [11] hook mechanism
to perform this type of packet interception. The netfilter
hook enables XenLoop to handle packets of different proto-
col types, though currently our protocol focuses on IPv4.

The XenLoop module also contains a mapping table that
stores the identity, as [guest-ID, MAC address] pair, of every
other guest VM within the same physical machine. This
mapping table is dynamically populated using a soft-state
domain discovery mechanism described later in Section 3.2.

Whenever two guest VMs within the same machine have
an active exchange of network traffic, they dynamically set
up a bidirectional inter-VM data channel between them-
selves using a handshake protocol. This channel bypasses
the standard data path via DomO for any communication
involving the two guests. Conversely, the Guests can choose
to tear down the channel in the absence of the active traffic
exchange in order to conserve system resources.

For each outgoing packet during data communication, the
software bridge first inspects its destination address and re-
solves the layer-2 MAC address of the next-hop node. This
resolution is done with the help of a system-maintained
neighbor cache, which happens to be the ARP-table cache
in the case of IPv4. The software bridge then looks up the
mapping table to check if the next hop node is a guest VM
within the same machine, in which case the packet is for-
warded over the inter-VM data channel. If the FIFO is full,
or the packet cannot fit into the available space, then the
packet is placed in a waiting list to be sent once enough
resources are available. If the next hop node is not a VM
within the same machine, or if the packet size is bigger than
the FIFO size, then the packet is forwarded using the stan-
dard netfront-netback data path via the driver domain.

3.2 Discovering Co-Resident Guest VMs

In order to set up inter-VM channels with other guests,
a guest needs to first discover the identity of co-resident
guests. Similarly, to tear down a stale inter-VM channel, a
guest needs to determine when the other endpoint no longer
exists. Ideally, we want this to occur transparently with-
out administrator intervention. To enable such transparent
setup and teardown of inter-VM channels, XenLoop employs
a soft-state domain discovery mechanism. Dom0, being a
privileged domain, is responsible for maintaining XenStore
— a store of key-value pairs representing different system
configuration parameters, including information about each
active guest VM. Whenever a new guest VM is created in a
machine, or when it migrates in from another machine, new
entries for that VM are created in XenStore to represent
its state. Conversely, when a VM dies or is migrated away
from a machine, its information in XenStore is destroyed.
Only Dom0 is capable of collating the XenStore information
about all active guests; unprivileged guest domains can read
and modify their own XenStore information, but not each
others’ information.

In order to advertise its willingness to set up XenLoop chan-
nels with co-resident guests, the XenLoop module in each
guest VM creates a XenStore entry named “xenloop” under

its XenStore hierarchy (presently “/local/domain/<guest-
ID>/xenloop”). A Domain Discovery module in Dom0 pe-
riodically (every 5 seconds) scans all guests in XenStore,
looking for the “xenloop” entry in each guest. It compiles
a list of [guest-ID, MAC address] identity pairs for all ac-
tive guest VMs in the machine that advertise the “xenloop”
entry and, by implication, their willingness to participate
in setting up inter-VM channels. The Domain Discovery
module then transmits an announcement message — a net-
work packet with a special XenLoop-type layer-3 protocol
ID — to each willing guest, containing the collated list of
their [guest-ID, MAC address] identity pairs. Absence of
the “xenloop” entry in XenStore for any guest leads to that
guest VM’s identity being removed from future announce-
ment messages. The above mechanism provides a soft-state
discovery design where only the guests that are alive and
have an active XenLoop module participate in communica-
tion via inter-VM channels.

The need to perform domain discovery announcements
from Dom0 arises because Xen does not permit unprivi-
leged guests to read XenStore information about other co-
resident guests. Another alternative discovery mechanism,
that doesn’t require a Discovery Module in Dom0, could
be to have each guest VM’s XenLoop module to broadcast
its own presence to other guests using special XenLoop-type
self-announcement network messages. However this requires
the software bridge in Dom0 to be modified to prevent the
XenLoop-type broadcasts from leaving the local machine
into the external network.

3.3 Inter-VM Communication Channel

The heart of XenLoop module is a high-speed bidirectional
inter-VM channel. This channel consists of three compo-
nents — two first-in-first-out (FIFO) data channels, one each
for transferring packets in each direction, and one bidirec-
tional event channel. The two FIFO channels are set up
using the inter-domain shared memory facility, whereas the
event channel is a 1-bit event notification mechanism for
the endpoints to notify each other of presence of data on
the FIFO channel.

FIFO Design: Each FIFO is a producer-consumer circu-
lar buffer that avoids the need for explicit synchronization
between the producer and the consumer endpoints. The
FIFO resides in a piece of shared memory between the par-
ticipating VMs. Each entry in the FIFO consists of a leading
8-byte metadata followed by the packet payload. To avoid
the need for synchronization, the maximum number of 8-
byte entries in the FIFO is set to 27, while the front and
back indices used to access to the FIFO are m-bits wide,
where m > k. In our prototype, m = 32 and k is config-
urable to any value up to 31. Both front and back are al-
ways atomically incremented by the consumer and producer
respectively, as they pop or push data packets from/to the
FIFO. It can be easily shown [2] that with the above design,
we do not need to worry about producer-consumer synchro-
nization or wrap-around boundary conditions. The situation
when multiple producer threads might concurrently access
the front of the FIFO, or multiple consumer threads the
back, is handled by using producer-local and consumer-local
spinlocks respectively that still do not require any cross-
domain produce-consumer synchronization. Hence the FI-
FOs are designed to be lockless as far as producer-consumer
interaction is concerned.

APPLICATIONS
SOCKET LAYER

TRANSPORT LAYER

NETWORK LAYER

INTER VM CHANNEL

APPLICATIONS
SOCKET LAYER

TRANSPORT LAYER

NETWORK LAYER

LISTENER CONNECTO
XENLOOP LAYER (ID=1) EVENT CHANNEL (ID=2) XENLOOP LAYER
< —
IN f— FIFO1 |—————out
XENLOOP out—— FIFo2 =lIN XENLOOP

BRIDGE

BRIDGE

D

NETFRONT DRIVER

ISCOVERY [<a
MODULE

BRIDGE

NETFRONT DRIVEH

GUEST VM 1

DOM 0 $

GUEST VM 2

Figure 2: XenLoop Architecture showing XenLoop module in guest, the domain discovery module in Dom0,
and the three components of inter-VM communication channel.

LISTENER CONNECTOR
(ID=1) (ID=2)

rgref_in = create fifol()

rgref_out = create fifo2()

rport = create_evtch()

send create channel() ———————————————

[rgref_in, rgref_out, rport] connect_fifol(rgref_out)

connect_fifo2(rgref_in)
connect_evtch(rport)

send_ack()

[connectedl

Figure 3: Bootstrapping the Inter-VM Channel.
The guest with smaller ID acts as the listener and
creates the shared FIFO pages and event channel,
whereas the guest with larger ID acts as connector.

Channel Bootstrap: When one of the guest VMs de-
tects the first network traffic destined to a co-resident VM,
it initiates a bootstrap procedure to set up the two FIFOs
and the event channel with the other endpoint. Figure 3
illustrates this bootstrap procedure. While the bootstrap is
in progress, the network traffic continues to traverse via the
standard netfront-netback data path. The bootstrap proce-
dure is similar to a “client-server” connection setup. During
bootstrap, the guest VM with the smaller guest ID assumes
the role of “server”, or the listener, whereas the other VM
assumes the role of “client”, or the connector. The identity
of the listener VM’s channel endpoint needs to be communi-
cated to the connector VM using out-of-band XenLoop-type
messages via the netfront-netback channel. The listener VM
sets up shared memory pages for the two FIFOs and grants

access to the connector VM to map these FIFO pages in
its address space. The listener VM also creates an event
channel endpoint to which the connector VM is permitted
to bind. The listener then sends a create channel message to
the connector, which contains three pieces of information —
two grant references, one each for a shared descriptor page
for each of the two FIFOs, and the event channel port num-
ber to bind to. The grant references for the remaining data
pages of each FIFO are stored within the descriptor FIFO
page. Upon receiving the create channel message, the con-
nector VM maps the descriptor page for each FIFO, reads
the grant references for remaining FIFO data pages from the
descriptor page, maps the data pages as well to its address
space, and binds to the event channel port of the listener
VM. The connector VM completes the inter-VM channel
setup by sending a channel ack message to the connector.
To protect against loss of either message, the listener times
out if the channel ack does not arrive as expected and re-
sends the create channel message 3 times before giving up.
Data Transfer: Once the inter-VM channel is boot-
strapped, the network traffic between VMs can now be ex-
changed over this channel, bypassing the standard netfront-
netback data path. Note that the distinction between the
roles of listener and connector is only for the duration of
channel bootstrap, and not during the actual data trans-
fer. Both the endpoints play symmetric roles during the
actual data transfer, acting as both senders and receivers
of data. The XenLoop module in the sender intercepts all
data packets on their way out from the network layer. If
the packets are destined to a connected co-resident VM, the
sender copies these packets onto its outgoing FIFO, which is
conversely the incoming FIFO for the receiver. After copy-
ing the packet onto the FIFO, the sender signals the receiver
over the event channel, which in turn asynchronously invokes

a pre-registered callback at the receiver’s XenLoop module.
The receiver copies the packets from the incoming FIFO into
its network buffers, passes the packets to the network layer
(layer-3), and frees up the FIFO space for future packets.

Comparing Options for Data Transfer: The above
mechanism involves two copies per packet, once at the sender
side onto the FIFO and once at the receiver from the FIFO.
We purposely eschew the use of page-sharing or page-transfer
mechanism employed by netback-netfront interface due to
the following reasons. An alternative to copying data pack-
ets would be that the sender should explicitly grant the re-
ceiver permission to either share the packet’s data page or
transfer it. The sharing option requires one event channel
notification to the receiver, one hypercall by the receiver to
map the page, and another hypercall by the receiver to re-
lease the page. (Granting and revoking access permissions
do not require a hypercall at the sender side since the grant
table is mapped to the sender’s address space.) The trans-
fer option requires one event channel notification from the
sender, one hypercall by the receiver to transfer a page, and
another hypercall to give up a page in exchange to the hyper-
visor. Additionally, both sides have to zero out in advance
the contents of any page that they share, transfer, or give
up to avoid any unintentional data leakage. This is known
within the Xen community to be an expensive proposition.

One additional option to avoid the copy at the receiver
would be to directly point the Linux network packet data
structure struct sk_buff to the data buffer in the FIFO,
and free the corresponding FIFO space only after the pro-
tocol stack has completed processing the packet. We also
implemented this option and found that the any potential
benefits of avoiding copy at the receiver are overshadowed by
the large amount of time that the precious space in FIFO
could be held up during protocol processing. This delay
results in back-pressure on the sender via the FIFO, signif-
icantly slowing down the rate at which FIFO is populated
with new packets by the sender. Thus we adopt a simple
two-copy approach as opposed to the above alternatives.

Channel Teardown: Whenever a guest VM shuts down,
removes the XenLoop module, migrates, or suspends, all ac-
tive inter-VM channels need to be cleanly torn down. The
guest winding down first removes its “xenloop” advertise-
ment entry in XenStore to forestall any new XenLoop con-
nections. It then marks all active FIFO channels as “inac-
tive” in the shared descriptor pages, notifies the guest VMs
at other endpoint over the respective event channels, and
disengages from both the FIFO pages and the event channel.
The other guest endpoints notice the “inactive” state marked
in shared descriptor page of each FIFO and similarly disen-
gage. The disengagement steps are slightly asymmetrical
depending upon whether initially each guest bootstrapped
in the role of a listener or a connector.

3.4 Routed Mode Operation

In the above design, the Domain Discovery module as-
sumes a bridged mode of operation. In other words, co-
resident VMs are configured in a common layer-3 subnet
and, without XenLoop, the VMs would communicate via a
software layer-2 bridge in Dom0 (see Figure 2).

Xen also provides an alternative routed mode option in
which co-resident VMs can be configured on different layer-
3 subnets. In this configuration, DomO acts as a layer-3
gateway, as opposed to a layer-2 bridge, when co-resident

domains communicate. XenLoop is also designed to work
with routed mode Xen setup.

The main component of the above design that changes
in routed mode setup is the Domain Discovery module in
Dom0. This module scans the Xenstore entries and collects
a list of [guest-ID, IP Address] information for each guest
VM, instead of the [guest-ID, MAC address] information
as in bridged mode. The collated list is then broadcasted
periodically to all domains within the machine. Note that it
is possible for a VM to have multiple IP addresses, in which
case the collated list would contain multiple mapping entries
for a single VM, one per IP address. Each VM listens to the
periodic announcement messages and stores the [guest-ID,
IP address] mappings of all co-resident VMs.

During channel setup and data transfer, the XenLoop mod-
ule in each guest examines the destination IP address of
outgoing packets, instead of their destination MAC address.
The first packet destined to the IP address of a co-resident
VM triggers the Channel Bootstrap procedure described in
Section 3.3. The channel setup procedure stays the same as
described earlier. Subsequent data packets are routed via
the inter-VM shared memory channel through a two-stage
lookup. First, the destination IP address in the packet is
matched with the guest-ID of the co-resident VM. Second,
the guest-ID is matched to the inter-VM shared memory
channel. Even though a guest VM can have multiple IP ad-
dresses, the guest-ID is unique for a VM. Thus the above
two-stage lookup ensures that there is only one XenLoop
channel for each pair of co-resident VMs, as opposed to hav-
ing one channel for each pair of IP addresses.

Further, it is also possible for a guest VM’s IP addresses to
change while Xenloop is running. Since the XenLoop mod-
ule in each VM uses a soft-state refresh mechanism to pe-
riodically update the IP addresses of co-resident VMs, it
would tear down old XenLoop channels when their corre-
sponding destination IPs are no longer being advertised by
Dom0. Similarly, if a new [guest-ID, IP address] pair for an
existing VM shows up in the announcements, then a new
XenLoop channel is set up when packets with the new IP
address are exchanged. Since IP address changes may hap-
pen only infrequently, the overhead of channel teardown and
setup is negligible.

3.5 Trangparently Handling VM Migration

XenLoop transparently adapts to the migration of VMs
across physical machines. If two communicating VMs, that
were originally on separate machines, now become co-resident
on the same machine as a result of migration, then the Dy-
namic Discovery module on Dom0 detects and announces
their presence to other VMs on the same machine, enabling
them to set up a new XenLoop channel. Conversely, when
one of two co-resident VMs is about to migrate, it receives a
callback from the Xen Hypervisor, which allows it to delete
its “xenloop” advertisement entry in XenStore, and grace-
fully save any outgoing packets or receive incoming packets
that may be pending in all its inter-VM channels, before
disengaging from the channel itself. The saved outgoing
packets can be resent once the migration completes. The
entire response to migration is completely transparent to
user applications in the migrating guest, does not require
application-specific actions, and does not disrupt any ongo-
ing communications. On a related note, XenLoop responds
similarly to save-restore and shutdown operations on a guest.

3.6 Alternative Packet I nterception M echanism

In the above design, XenLoop uses Netfilter hooks to in-
tercept outgoing network packets below the IP layer and
above the device driver layer. Alternatively, one could also
intercept outgoing packets at a higher level in the protocol
stack, namely, below the socket layer and above the trans-
port layer. This could potentially provide better inter-VM
communication performance due to lower protocol process-
ing overheads. To test this hypothesis, we implemented an
alternative design of the XenLoop system as follows.

The domain discovery and inter-VM channel setup compo-
nents are mostly similar to the design described above. How-
ever, we needed hooks within the packet processing chain in
order to move the interception of outgoing packets higher
up the protocol stack. Unfortunately, Linux did not provide
an equivalent of Netfilter-type hooks at this level for clean
packet interception by third-party modules. Instead, each
layer-4 protocol family, namely TCP, UDP, SCTP, and raw
sockets, registers its own protocol specific hooks with the
socket layer at boot time. The only way to intercept pack-
ets is to replace these original protocol processing hooks for
every layer-4 protocol, with our own protocol interception
functions. These interception functions can then examine
each outgoing packet, before either redirecting it to the Xen-
Loop inter-VM channel or calling the original layer-4 proto-
col processing functions. For example, the UDP protocol
processing code registers a set of protocol hooks for pro-
cessing both incoming and outgoing UDP packets. Without
going into the explanation for each hook, one such hook is
the udp_sendmsg() function which processes outgoing UDP
packets. An equivalent XenLoop interception function is
x1_udp_sendmsg that examines the outgoing packet to de-
termine if it is destined to a co-resident VM, in which case
the packet is redirected to a shared memory XenLoop chan-
nel; otherwise the original udp_sendmsg() function is called.

In order to register the alternative interception functions,
we could directly modify the core network processing code
in the Linux kernel. However this would violate the require-
ment of kernel transparency. Instead, we leave the kernel un-
modified and choose to “hijack” the layer-4 protocol process-
ing hooks after the unmodified kernel has booted up. This
is done by unregistering the original protocol hooks when
the XenLoop module initializes itself and registering alter-
nate interception functions for each layer-4 protocol. One
drawback of this approach is that Linux kernel does not
provide enough visibility into its internal data structures so
we could restore the original hooks when XenLoop module
is removed.

With the alternative interception hooks in place, Xen-
Loop operates much the same way as before. All proto-
col control operations, such as connection setup/teardown
for TCP, occur out-of-band via the original protocol stack
and through netfront-netback interface. All data packets are
redirected via the XenLoop shared memory channel. One
minor difference from the Netfilter-based design is that in-
tercepted data packets no longer carry packet headers just
below the socket layer. Hence their eventual destination
needs to be deduced from socket connection data structures.
Further, we need to add additional connection identification
information to each data packet in order to use a common
shared memory channel that can multiplex multiple simulta-
neous connections between two co-resident VMs. Otherwise
one would need an independent shared memory channel for

each session, which is not practical given the limits on num-
ber of grant references.

With this model, we now need only two data copies per
packet to shepherd packets between co-resident VMs, as
opposed to four copies in the case of Netfilter-based ap-
proach. Our preliminary performance comparison indicates
a 25% gain in throughput over the Netfilter-based approach,
with little difference in round-trip latency. However, the
flip side is that we sacrifice the benefits of protocol-specific
processing such as TCP’s flow and congestion control, be-
cause packet interception now occurs before such processing
is invoked. This also complicates VM migration, since we
need to reset the state of each communication session on
a protocol-by-protocol basis just before the migration takes
place. For UDP, doing this reset is straightforward, but
incurs significant code complexity for TCP to ensure the
consistency of byte-steam communication between the two
endpoints before and after migration. Handling protocol-
specific state turns out to be particularly difficult for TCP
sessions between VMs that were previously on separate ma-
chines and now become co-resident. For the above reasons,
packet interception below the socket layer is somewhat less
appealing and practical at the moment than interception be-
low the IP layer, in spite of its potential performance bene-
fits.

4. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
XenLoop prototype. All experiments were performed us-
ing a test machine with dual core Intel Pentium D 2.8GHz
processor, 1IMB cache, and 4GB main memory. We deployed
Xen 3.2.0 for the hypervisor and paravirtualized Linux 2.6.18.8
for the guest OS. Another Intel Pentium D 3.40GHz ma-
chine, with 2MB cache and 4GB main memory, was also
used to measure the native machine-to-machine communi-
cation performance over a 1Gbps Ethernet switch. We con-
figured two guest VMs on the test machine with 512MB of
memory allocation each for inter-VM communication exper-
iments. Our experiments compare the following four com-
munication scenarios:

e Inter-Machine: Native machine-to-machine commu-
nication across a Gigabit switch.

e Netfront-Netback: Guest-to-guest communication
via standard netfront-netback datapath.

e XenLoop: Guest-to-guest communication via the Xen-
Loop inter-VM communication channel.

e Native Loopback: Network communication between
two processes within a non-virtualized OS via the local
loopback interface. This workload serves as a baseline
comparison for other scenarios.

For test workloads, we use three unmodified benchmarks,
namely netperf [12], Imbench [7], and netpipe-mpich [14,
16, 15], in addition to ICMP ECHO REQUEST/REPLY
(flood ping). netperf is a networking performance bench-
mark that provides tests for both unidirectional through-
put and end-to-end latency. lmbench is a suite of portable
benchmarks that measures a UNIX system’s performance in
terms of various bandwidth and latency measurement units.
netpipe-mpich is a protocol independent performance tool
that performs request-response tests using messages of in-

Inter Netfront/ Native
Machine | Netback | XenLoop | Loopback

Imbench

(tcp) 848 1488 4920 5336
(Mbps)
netperf

(tcp) 941 2656 4143 4666
(Mbps)
netperf

(udp) 710 707 4380 4928
(Mbps)
netpipe-

mpich 645 697 2048 4836
(Mbps)

Table 2: Average bandwidth comparison.

6000]

[|%= netback/netfront]

I | o= native loopback 1

‘0 5000~ | c-o native inter-machin 7
o [|v— xenloop g
o] F]
= 4000F]
~— r i
— r]
> C]
Q. 3000 7
< L]
(@) F]
> L]
O 2000~ N
= L]
= []
— b 1
1000; — 3

s \ \ \ i

Inter Netfront/ Native
Machine | Netback | XenLoop | Loopback
Flood
Ping 101 140 28 6
RTT (us)
Imbench 107 98 33 25
(us)
netperf
TCP_RR 9387 10236 28529 31969
(trans/sec)
netperf
UDP_RR 9784 12600 32803 39623
(trans/sec)
netpipe-
mpich 77.25 60.98 24.89 23.81
(ps)

Table 3: Average latency comparison.

creasing size between two processes which could be over a
network or within an SMP system.

4.1 Snapshot of Microbenchmarks

Table 2 compares the measured bandwidth across four dif-
ferent communication scenarios using four benchmark gen-
erated workloads. We observe that across all cases, the
improvement in bandwidth for XenLoop over the netfront-
netback ranges from a factor of 1.55 to 6.19. Table 3 com-
pares the measured latency across the four communication
scenarios using four benchmark-generated request-response
workloads. Compared to netfront-netback, XenLoop yields
5 times smaller ping latency, 3 times smaller latency with Im-

bench, 2.8 times higher transactions/sec with netperf TCP_RR,

2.6 times higher transactions/sec with UDP_RR, and 2.43
times smaller latency with netpipe-mpich. The latency per-
formance gap of XenLoop against native loopback is wider
than in the bandwidth case, being worse by a factor ranging
from 1.2 to 4.6. Also note that average latency for netfront-
netback is either marginally better than inter-machine la-
tency, or sometimes worse. This illustrates the large over-

head incurred during small message exchanges across netfront-

netback interface.

4.2 Impact of Message and FIFO Sizes
Figure 4 plots the bandwidth measured with netperf’s

Message Size vs Bandwidth

8 10 12 14
Message size (log2(bytes))

Figure 4: Throughput versus UDP message size us-
ing netperf benchmark.

UDP_STREAM test as the sending message size increases.
Bandwidth increases for all four communication scenarios
with larger message sizes. This is because smaller messages
imply a larger number of system calls to send the same num-
ber of bytes, resulting in more user-kernel crossings. For
packets larger than 1KB, XenLoop achieves higher band-
width than both netfront-netback and native inter-machine
communication. For packets smaller than 1KB, native inter-
machine communication yields slightly higher bandwidth
than both XenLoop and netfront-netback due to significant
domain switching and split-driver induced overheads for small
packet sizes. Netback/netfront yields slightly lower band-
width than native inter-machine communication across most
message sizes. Beyond 1KB packet size, neither native loop-
back nor XenLoop appear to be conclusively better than the
other. Figure 5 shows that increasing the FIFO size has a
positive impact on the achievable bandwidth. In our exper-
iments, we set the FIFO size at 64KB in each direction.

4.3 MPI Benchmark Performance

Next we investigate the performance of XenLoop in the
presence of MPI applications using the the netpipe-mpich
benchmark in the four communication scenarios. Netpipe-
mpich executes bandwidth and latency tests using request-
response transactions with increasing message sizes to mea-
sure MPICH performance between two nodes. Figure 6 plots
the one-way bandwidth variation and Figure 7 plots the
latency variation with increasing message sizes. These re-
sults validate our observations in earlier experiments. Xen-
Loop latency and bandwidth performance is significantly
better than netfront-netback performance, which in turn
closely tracks the native inter-machine performance. Xen-
Loop latency in this experiment also closely tracks the native
loopback latency, whereas XenLoop bandwidth follows the
native loopback trend at a smaller scale.

44 0OSU MPI Benchmark Performance

We also investigate the performance of XenLoop using the
the OSU MPI benchmark in the four communication scenar-

FIFO Size vs Bandwidth

G—o xenloop

350

w
A
o
(@]

3300

Throughput (Mbps)

w
=
o
o

; ; :
FIFO size (log2(pages))

Figure 5: Throughput versus FIFO size using net-
perf UDP bandwidth test.

ios. The bandwidth tests measures the maximum sustain-
able aggregate bandwidth by two nodes. The bidirectional
bandwidth test is similar to the unidirectional bandwidth
test, except that both the nodes send out a fixed number of
back-to-back messages and wait for the response. Figure 8
plots the one-way bandwidth variation with increasing mes-
sage sizes, Figure 9 plots the two-way bandwidth variation,
and Figure 10 plots the latency variation. These results show
the same performance trend as the previous MPICH test.
We can see that XenLoop does much better job than native
inter-machine and netfront-netback when the message size
is smaller than 8192. This can be understood by observing
that large-sized messages fill the FIFO very quickly and sub-
sequent messages have to wait for the receiver to consume
the older ones.

45 VM Migration Performance

In this section, we demonstrate that after migration guest
VMs can dynamically switch between using XenLoop chan-
nel and the standard network interface depending on whether
they reside on the same or different machines respectively. In
our experiment, originally the two VMs are on different ma-
chines, then one of them migrates and becomes co-resident
on the same machine as the second VM, and then again mi-
grates away to another machine. During the migration, we
run the netperf request-response latency benchmark. Fig-
ure 11 shows the number of TCP request-response transac-
tions per second observed between two guest VMs during
this migration process. Originally, the two guests have a
transaction rate of about 5500 transactions/sec on separate
machines, which translates to and average round trip latency
of 182us. Then, as the VMs migrate together, detect that
they are co-resident, and establish the XenLoop channel, the
transaction rate increases to about 21000 transactions/sec,
i.e. the average latency drops to 47.6us. The reverse is
observed once the VMs separate again.

5. RELATED WORK

Most state-of-the-art inter-VM communication mechanisms

Throughput (Mbps)

()]

Netpipe-mpich Bandwidth

5000 T e
L | *=k netback/netfront
[| v native loopback
r | &-© native inter-maching

40001~ &> xenloop

3000~

20001

1000~
- PP . R

1 1000 10000 l1le+05 1le+06
Data size (bytes)
Figure 6: Throughput versus message size for

netpipe-mpich benchmark.

provide either transparency or performance, but not both.
As mentioned earlier, the Xen [1] platform enables applica-
tions to transparently communicate across the VM bound-
ary using standard TCP/IP network sockets. However, all
network traffic from the sender VM to the receiver VM is
redirected via the netfront-netback interface with Dom0, re-
sulting in significant performance penalty. There have been
recent efforts [8, 9] to improve the performance of the stan-
dard netback-netfront datapath in Xen, though not targeted
towards co-resident VM communication in particular.

Prior research efforts, namely XenSockets [19], IVC [4],
and XWay [5] have exploited the facility of inter-domain
shared memory provided by the Xen hypervisor, which is
more efficient than traversing the network communication
path via Dom0. In all these approaches, however, inter-VM
communication performance is improved at the expense of
some user or kernel-level transparency.

XenSockets [19] is a one-way communication pipe between
two VMs based on shared memory. It defines a new socket
type, with associated connection establishment and read-
write system calls that provide interface to the underlying
inter-VM shared memory communication mechanism. User
applications and libraries need to be modified to explicitly
invoke these calls. In the absence of support for automatic
discovery and migration, XenSockets is primarily used for
applications that are already aware of the co-location of the
other VM endpoint on the same physical machine, and which
do not expect to be migrated. XenSockets is particularly in-
tended for applications that are high-throughput distributed
stream systems, in which latency requirement are relaxed,
and that can perform batching at the receiver side.

IVC [4] is a user level communication library intended
for message passing HPC applications that provides shared
memory communication across co-resident VMs on a phys-
ical machine. Unlike XenSockets, IVC does not define a
new socket type, but provides a socket-style user-API using
which an IVC aware application or library can be (re)written.
VM migration is supported, though not fully transparently
at user-space, by invoking callbacks into the user code so
it can save any shared-memory state before migration gets

1le+07

Netpipe-mpich Latency

E | %= netback/netfront]
[| v native loopback 1
& o GO)r(\g't':?geomter-machme
E |o= p
el E
[E
8 L
O 001 3
(/) E 3
N C |
> L 1
o
c 0.001= E
(] F E
+— C |
© r]
| L i
0.000% 4
le-08—t v vl vl v vk v

1 10 100 1000
Data size (bytes)

Figure 7: Latency versus message size for netpipe-
mpich benchmark.

OSU MPI Unidirectional Bandwidth Test v3.0

6000¢ 3
E | %= netback/netfront E
E |G—© native inter-maching 3
’U)\ 5000~ |<&—< xenloop 3
o E | v native loopback g
2 E]
= 4000 3
N—r e 3
+— E 3
> E E
Q. 3000~ 3
e E B
()] E
S E *
O 2000~ 3
S E |
= E E
= g E
1000 g
10 12 14 16 18 20 22

Message size (log2(bytes))

Figure 8: Throughput versus message size for OSU
MPI Uni-direction benchmark.

underway. Authors also use IVC to write a VM-aware MPI
library called MVAPICH2-ivc to support message passing
HPC applications. IVC is beneficial for HPC applications
that are linked against MVAPICH2-ivc or that can be mod-
ified to explicitly use the IVC API.

XWay [5] provides transparent inter-VM communication
for TCP oriented applications by intercepting TCP socket
calls beneath the socket layer. Available information indi-
cates that VM migration is a work-in-progress as of date and
there is no support for automatic discovery of co-resident
VMs. XWay also requires extensive modifications to the im-
plementation of network protocol stack in the core operating
system since Linux does not seem to provide a transparent
netfilter-type hooks to intercept messages above TCP layer.

MMNet [13] provides an inter-VM communication mecha-
nism between two completely trusting co-resident VMs. The
entire kernel address space of each VM is mapped into the
address space of the other VM allowing both to directly

Throughput (Mbps)

10000 1e+05 1le+06 1le+07

le+05: 3
— F | % netback/netfront B
o] F | G—© native inter-maching
[[| &= xenloop K
8 10000= | w— native loopback .
(] E B
e i 1
9 1000 E
L
S F]
= |]
O 100 =3
c 9 E
Q r]
< o]
— 10;’ 3

L \ \ ‘ \ IR IR R]
0 2

OSU MPI Bi-directional Bandwidth Test v3.0

10000

— netback/netfront
G—© native inter-maching
=< xenloop

w5 hative loopback

9000

8000

7000

6000

5000

4000

3000

2000

1000

B‘ Ly

16 18 20
Message size (Iog2(bytes))

Figure 9: Throughput versus message size for OSU
MPI Bi-direction benchmark.

OSU MPI Latency Test v3.0

8 10 12 14 16 18 20 22
Message size (log2(bytes))

Figure 10: Latency versus message size for OSU
MPI Latency benchmark.

peek into the socket data structures and avoid data copies.
This property however breaks the fundamental requirement
of inter-VM memory isolation, which is critical in most VM
environments. MMNet also does not support live migration
of communicating co-resident VMs.

In other application specific areas, XenFS [17] improves
file system performance through inter-VM cache sharing.
HyperSpector [6] permits secure intrusion detection via inter-
VM communication. Prose [3] employs shared buffers for
low-latency IPC in a hybrid microkernel-VM environment.
Proper [10] describes techniques to allow multiple PlanetLab
services to cooperate with each other.

6. CONCLUSIONS

There is a growing trend toward using virtualization to
enforce isolation and security among multiple cooperating
components of complex distributed applications. Such ap-
plication arise in high performance, enterprise, and desktop

Migration Latency

3000

L e)) L B) I B S B) B

25000

20000

15000

10000

5000

L

100 200 300 400
Time (Seconds)

P B

600

o
O

Request-Response (transactions/sec)

500

Figure 11: Request response transactions/sec dur-
ing migration.

computing settings. This makes it imperative for the under-
lying virtualization technologies to enable high performance
communication among these isolated components, while si-
multaneously maintaining inter-VM isolation and applica-
tion transparency. In this paper, we presented the design
and implementation of a fully transparent and high per-
formance inter-VM network loopback channel, called Xen-
Loop, that preserves user-level transparency and yet de-
livers high communication performance across co-resident
guest VMs. XenLoop couples shared memory based in-
ter domain communication with transparent traffic intercep-
tion and a soft-state domain discovery mechanism to satisfy
the multiple objectives of performance, isolation, and trans-
parency. XenLoop also permits guest VMs to migrate trans-
parently across machines while seamlessly switching between
the standard network data path and the high-speed Xen-
Loop channel. Evaluation using a number of unmodified
benchmarks demonstrates a significant reduction in inter-
VM round trip latency and increase in communication through-
put.

Acknowledgement

We'd like to thank Suzanne McIntosh and Catherine Zhang
from IBM Research for helpful interactions and discussions
regarding their implementation of XenSockets [19]. This
work is supported in part by the National Science Founda-
tion through grants CNS-0509131 and CCF-0541096.

7. REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, and S. Hand et.al.
Xen and the art of virtualization. In SOSP, Oct. 2003.

[2] David Chisnall. The Definitive Guide to the Xen
Hypervisor. Prentice Hall, 2nd edition, 2007.

[3] E.V. Hensbergen and K. Goss. Prose i/o. In In First
International Conference on Plan 9, Madrid, Spain,
2006.

[4] W. Huang, M. Koop, Q. Gao, and D.K. Panda.
Virtual machine aware communication libraries for

(10]

=
=

=
)

=
)

(14]

high performance computing. In Proc. of
SuperComputing (SC’07), Reno, NV, Nov. 2007.

K. Kim, C. Kim, S.-I. Jung, H. Shin and J.-S. Kim.
Inter-domain Socket Communications Supporting High
Performance and Full Binary Compatibility on Xen.
In Proc. of Virtual Ezecution Environments, 2008.

K. Kourai and S. Chiba. HyperSpector: Virtual
Distributed Monitoring Environments for Secure
Intrusion Detection. In Proc. of Virtual Execution
FEnvironments, 2005.

L. McVoy and C. Staelin. Imbench: Portable tools for
performance analysis. In Proc. of USENIX Annual
Technical Symposium, 1996.

A. Menon, A.L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. In Proc. of USENIX
Annual Technical Conference, 2006.

A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman,
and W. Zwaenepoel. Diagnosing performance
overheads in the xen virtual machine environment. In
Proc. of Virtual Execution Environments, 2005.

S. Muir, L. Peterson, M. Fiuczynski, J. Cappos, and
J. Hartman. Proper: Privileged Operations in a
Virtualised System Environment. In USENIX Annual
Technical Conference, 2005.

Netfilter. http://www.netfilter.org/.

Netperf. http://www.netperf.org/.

P. Radhakrishnan and K. Srinivasan. MMNet: An
efficient inter-vm communication mechanism. In Xen
Summit, Boston, June 2008.

Q.O. Snell, A.R. Mikler, and J.L. Gustafson.
NetPIPE: A network protocol independent
performance evaluator. In Proc. of IASTED
International Conference on Intelligent Information
Management and Systems, 1996.

D. Turner and Xuehua Chen. Protocol-dependent
message-passing performance on linux clusters. In
Proc. of Cluster Computing, 2002.

D. Turner, A. Oline, X. Chen, and T. Benjegerdes.
Integrating new capabilities into NetPIPE. In Proc. of
10th European PVM/MPI conference, Venice, Italy,
2003.

XenFS. hitp://wiki.zensource.com/renwiki/XenFS.
XenLoop Source Code.
http://osnet.cs.binghamton.edu/projects/xenloop. html.
X. Zhang, S. MclIntosh, P. Rohatgi, and J.L. Griffin.
Xensocket: A high-throughput interdomain transport
for virtual machines. In Proc. of Middleware, 2007.

