
1

V-Recover: Virtual Machine Recovery When
Live Migration Fails

Dinuni Fernando, Jonathan Terner, Ping Yang, Kartik Gopalan

Live migration is a critical technology used in cloud infrastructures to transfer running virtual
machines (VMs). When live migration fails, as it often does, it is critical that any VMs in transit are
not lost. There are two primary live migration techniques – pre-copy and post-copy. Pre-copy
transfers a VM’s memory to the destination before its virtual CPUs are transferred, whereas
post-copy does the reverse. Both pre-copy and post-copy will lose the VM if the source machine
fails during migration. Additionally, post-copy can lose the VM if the destination machine or
network fail since the VM’s memory and execution state are split across the source and
destination machines. We present V-Recover, an approach to recover a VM when the source,
destination, or network fails during live migration. V-Recover consists of two techniques: (1) a
forward incremental checkpointing (FIC) mechanism to handle source machine failure during both
pre-copy and post-copy, and (2) a reverse incremental checkpointing (RIC) mechanism to handle
destination or network failure during post-copy. We present the design, implementation, and
evaluation of V-Recover in the KVM/QEMU virtualization platform. Our evaluations show that
V-Recover effectively recovers a VM upon migration failure with acceptable overheads on
migration metrics and application performance.
Index Terms—virtual machine, live migration, fault tolerance

F

1 INTRODUCTION

Virtual machine (VM) migration transfers a VM from a
source physical machine to a destination physical machine.
In live VM migration, the VM keeps executing during migra-
tion for all but a short duration, known as downtime, which
is usually when its CPU execution state is transferred. Live
VM migration is a key technology used in cloud platforms
for routine server maintenance, load balancing, scaling to
meet performance demands, and consolidation to save en-
ergy. Most major hypervisors such as VMware [1], [2],
KVM [3], Xen [4], [5], [6], and Hyper-V [7] support live VM
migration. Live VM migration is also used by many cloud
platforms, such as in Google’s production infrastructure,
which performs over a million migrations each month [8].

Existing live VM migration techniques aim to migrate
VMs as quickly as possible to the destination with minimal
performance impact on applications running inside the VM.
There are two predominant live VM migration techniques:
pre-copy [1], [9] and post-copy [10], [11]. The two techniques
differ in whether a VM’s memory pages are transferred
before or after the transfer of its virtual CPUs (VCPUs).

• Dinuni Fernando is with University of Colombo, School of Computing.
• Jonathan Terner is with IBM, USA.
• Ping Yang and Kartik Gopalan are with Binghamton University, USA.
• Contact emails: {pyang,kartik}@binghamton.edu
• Research conducted at Binghamton University, USA

In the rest of this section, we first provide a brief
overview of pre-copy and post-copy live migration, then
describe the problem of failure resilience in live migration,
followed by a summary of our contributions in this paper.

1.1 Overview of Pre-copy and Post-copy

Figure 1 shows the timeline of traditional pre-copy and
post-copy live migration techniques. In pre-copy migration,
the VM to be migrated initially continues execution at
the source machine while its memory contents are concur-
rently transferred to the destination over multiple rounds
(or iterations). In the first round, all memory pages are
transferred, whereas subsequent rounds transfer only the
pages modified (or dirtied) by the VM during the preceding
round. The downtime begins when the number of dirty
pages remaining becomes less than a predefined threshold.
During downtime, the source machine pauses the VM’s
VCPUs and transfers all the dirty pages and VCPU states to
the destination. The VM is then resumed at the destination
and migration completes.

Pre-copy works well for VMs that mostly read from
memory, i.e. read-intensive VMs. However, for write-
intensive VMs, pre-copy rounds may not converge quickly
to downtime, if ever, because each round would have sub-
stantial amount of dirty memory pages to transfer from the
preceding round. Thus, for write-intensive VMs, pre-copy
migration experiences a long total migration time (due to



2

Fig. 1: Timeline of pre-copy and post-copy live migration.

many pre-copy rounds) and significant downtime (due to
many dirty pages transferred during the downtime).

Post-copy migration solves the above deficiency of pre-
copy in migrating write-intensive VMs. In post-copy, the
VM is first suspended on the source machine and it’s VCPU
states are transferred to the destination. The VCPUs are
immediately resumed at the destination even though the
VM’s memory pages have not yet been transferred. Con-
currently, the memory pages are actively pushed from the
source to the destination, with the expectation that most
pages would reach the destination before they are accessed
by the VM. If the VM accesses a page at the destination that
has not yet been pushed from the source, then a page fault is
triggered. The faulted page is then demand paged (explicitly
requested) over the network from the source machine. Such
remotely-serviced page faults may temporarily slow down
the VM’s progress at the destination until its full working
set is transferred from the source. To reduce the number of
page-faults, the source machine can prioritize pushing the
VM’s working set, such as pages around the location of the
last page-fault, so that most pages can be sent before the VM
faults on them.

Post-copy works equally well whether a VM’s workload
is read-intensive or write-intensive because each page is
transferred over the network exactly once. In contrast, pre-
copy transfers dirtied pages multiple times, causing in-
creased network traffic and longer migration time. Google’s
data centers [8] use both techniques depending on whether
the VM’s workload is read-intensive or write-intensive.

1.2 Failure Resilience Problem of Live Migration
An important consideration in live VM migration, and the
focus of this paper, is the robustness of the live migration
mechanism. Specifically, the source, the destination, or the
network can fail during the live migration. Since a VM
encapsulates a cloud customer’s critical workload, it is es-
sential that the VM’s execution state is preserved accurately
and not lost due to failures during live migration.

In both techniques, the failure of the source machine
during the migration could result in a permanent loss of
the VM because some or all of the latest VM state resides
at the source machine. Specifically, for pre-copy, the source
contains the latest dirtied memory pages and execution state
(VCPUs and I/O); for post-copy the source contains pages

that have not yet been transferred to the destination. A
loss of the source in either case would leave the VM in an
unrecoverable state.

However, pre-copy and post-copy differ in their re-
silience to failure of the destination machine or the network.
It turns out that post-copy has worse failure resilience
than pre-copy. For pre-copy, a failure of the destination
machine or the network is not catastrophic, because the
source machine still holds an up-to-date copy of the VM’s
memory and execution state and hence the VM is not lost.
However, for post-copy, a destination or network failure
is still catastrophic because the latest state of the VM is
split between the source and the destination machines. The
destination machine has a more up-to-date copy of the
VM’s execution state and some of its memory pages that
have been transferred, whereas the source machine holds
pages that are yet to be transferred. Thus, a destination or
network failure during post-copy migration results in an
irrecoverable loss of the VM.

To the best of our knowledge, the above failure scenarios
involving a potential loss of the VM and its recovery has
not been addressed by other researchers. The problem is
important because a VM is particularly vulnerable during
live migration. VM migration may last anywhere from a few
seconds to several minutes, depending on a number of fac-
tors such as the VM’s memory size, the applications running
inside the VM, and other workload in the cluster. Thus the
window of vulnerability is significant. In addition, because
the VM is live during the migration, it might communicate
over the network with remote entities, altering the external
world’s view of the VM’s state. Hence, upon failure, one
cannot simply revert the VM to an older snapshot that was
saved before the migration began.

1.3 Contributions

We propose a technique called V-Recover to recover a VM
upon the failure of the source, destination, or network dur-
ing live migration. V-Recover has two components: (1) for-
ward incremental checkpointing (FIC) to handle source ma-
chine failure, and (2) reverse incremental checkpointing (RIC)
to handle destination or network failure.

The key idea behind FIC is as follows. Prior to migration,
the source machine periodically saves forward incremental
checkpoints of the VM to another machine (other than the
source). Each forward checkpoint consists of the incremental
state of the VM since the previous checkpoint. For pre-
copy migration, the incremental checkpointing continues
during the live pre-copy rounds. A final forward incremen-
tal checkpoint is performed for both pre-copy and post-
copy just before downtime begins. If the source machine
fails during live migration, then the lost VM state can be
recovered by combining the VM states saved in the forward
incremental checkpoint and the state already transferred to
the destination.

RIC, on the other hand, can be used during post-copy
to handle destination and network failures. Once a VM re-
sumes execution at the destination, the destination transmits
incremental checkpoints of the VM to an in-memory check-
point store at another machine (either a third machine or the
source itself). Reverse checkpointing proceeds concurrently,



3

Fig. 2: The architecture of V-Recover.

and in coordination with, the forward post-copy migration
from source to destination. These reverse checkpoints can
be sent either periodically or upon external I/O activities of
the VM (i.e., event-based checkpointing). If the destination
or the network fails during the post-copy, then the source
machine restores the VM from the last consistent reverse
checkpoint received from the destination.

Note that the incremental checkpoints are much smaller
than full-VM checkpoints because they consist of only the
VM’s modified memory pages since the last checkpoint,
plus its VCPU and I/O states. We store the incremental
checkpoints in an in-memory checkpoint store, instead of a
disk, to reduce the time spent in transferring the checkpoints
and to speed up the restoration process. For checkpoint
consistency, packet transmissions from the VM to the ex-
ternal world are buffered between successive incremental
checkpoints.

We implemented and evaluated a prototype of V-
Recover in the KVM/QEMU virtualization platform. Our
evaluations of the prototype using a variety of benchmarks
show that V-Recover can effectively recover a VM upon
live migration failure with acceptable overheads on live
migration metrics and application performance.

A preliminary version of this paper [12] addressed
destination and network failure during post-copy through
reverse incremental checkpointing. This paper significantly
extends our prior work by addressing source failures dur-
ing both pre-copy and post-copy migration. We have also
conducted extensive additional experiments to evaluate the
effectiveness of V-Recover using various standard bench-
marks such as STREAM, Sysbench and YCSB.

The rest of the paper is organized as follows. Sections 2
and 3 present the design and the implementation of V-
Recover, respectively. Section 4 provides the evaluation re-
sults of V-Recover. Related work is discussed in Section 5
and Section 6 concludes the paper.

2 V-RECOVER DESIGN

V-Recover is designed to recover a VM when the source,
the destination, or the network fails during live migration
of the VM. Figures 2 and 3 provide V-Recover’s architecture
and operation timeline, respectively. As mentioned earlier,
V-Recover consists of two main components: forward incre-
mental checkpointing (FIC) and reverse incremental check-
pointing (RIC). FIC can be used with both pre-copy and
post-copy to handle source machine failure whereas RIC is
specifically designed for post-copy to handle the failure

Fig. 3: Timeline of V-Recover in pre-copy and post-copy. Ver-
tical bars in the timeline represent incremental checkpoints.
FIC operates before downtime. RIC operates in post-copy
after downtime.

of the destination machine or the network. FIC operates
prior to downtime in both pre-copy and post-copy, whereas
RIC operates after downtime only in post-copy.

Upon source failure, for pre-copy, one must resort to
non-live VM recovery using forward checkpoints. On the
other hand, post-copy can perform live VM recovery upon
source failure because the destination is executing the latest
VM state and only the VM’s missing memory pages need
to be restored. Upon a destination or network failure, pre-
copy migration is not affected as discussed earlier. However
for post-copy, one must perform non-live VM recovery by
loading the latest reverse checkpoints captured by RIC.

Our failure model in V-Recover is as follows. We assume
that only one failure occurs before the VM is recovered, i.e.
only one of the source machine, the destination machine, or
the network fails. We assume that there are no additional
failures during VM recovery. We further assume that the
machine containing the incremental checkpoints (the check-
point server) remains accessible over the network to the ma-
chine performing the recovery. Specifically, the destination
machine should be able to access forward checkpoints to
recover from source failures and the source machine should
be able to access reverse checkpoints to recover from desti-
nation and network failures. Additionally, upon a network
failure that prevents the source and destination from com-
municating, to prevent VM duplication by both the source
and destination machines, we assume that the checkpoint
server is placed such that it is accessible only by the source
and not by the destination, so that only the source machine
can perform the VM recovery. For instance, when migrating
a VM across two racks, the above conditions can be met
by placing the checkpoint server on the source rack, further
assuming that there are no intra-rack network failures. We
do not consider multiple failure scenarios in this paper
even though some of them could be potentially handled
by our techniques; for instance, the checkpoint server could
potentially reconstruct a VM on its own in case both the
source and destination machines fail together. Failures that
occur before or after the live migration can be handled by



4

existing fault tolerance solutions [13] [14]. Storage failures
can be mitigated using existing storage redundancy and
recovery techniques [15]. Migration failures due to software
bugs are not considered in this paper.

2.1 Forward Incremental Checkpointing (FIC)

FIC aims to recover a VM when the source machine fails
during live migration. When a VM starts, FIC transfers an
initial full VM checkpoint to a checkpoint store, which is
an in-memory key-value store located at a third staging
machine. Thereafter, during the VM’s normal execution
at the source, FIC periodically saves partial incremental
checkpoints of the VM’s modified memory pages to the
checkpoint store. Just before downtime is to begin, the VM’s
execution at the source is paused and FIC transfers a final
and consistent incremental checkpoint of the VM to the
checkpoint store.

Overhead Reduction: FIC periodically transfers incre-
mental partial memory checkpoints during the normal ex-
ecution of the VM with limits on the rate of memory
transfer. The VM’s execution is not paused during partial
checkpoints since only modified memory pages are trans-
ferred. Specifically, at every periodic time interval I (a
few minutes or seconds) FIC transfers modified memory
pages that haven’t yet been transferred to the checkpoint
store. The number of pages transferred in each interval is
bounded by either a maximum count N or a time limit T ,
whichever is reached first. All three parameters I , N , and T
are configurable to reduce the overhead of FIC on the nor-
mal execution of VMs. These partial memory checkpoints
together constitute progress towards a complete incremental
checkpoint, when the VCPU execution state is also captured.
To reduce the impact on application performance during
VM recovery, the checkpoint store periodically merges the
incremental checkpoints into a latest memory checkpoint.

Instead of performing incremental live checkpointing
prior to migration, one could alternatively checkpoint the
VM’s entire memory and execution state once just before
live migration begins. If such a checkpointing was non-live,
then it would introduce significant downtime. Additionally,
network transfer to checkpoint store would compete for
network bandwidth with live migration, thus prolonging
the total migration time. Hence we chose a live FIC design
that performs periodic partial incremental memory check-
pointing to amortize the cost of FIC over the lifetime of the
VM at the source.

Multiple VMs: In cloud environments, a physical ma-
chine often hosts multiple VMs, any of which can be
migrated in advance. As a result, FIC must periodically
checkpoint all VMs’ memory states to different checkpoint
store instances. Partial memory checkpointing allows FIC to
limit the rate at which memory pages are checkpointed and
transferred periodically. It is also possible that FIC may
be checkpointing one VM while another VM is being live
migrated, leading to contention on the shared network in-
terface. To reduce this contention, FIC monitors the available
outgoing network bandwidth on the source machine prior
to checkpointing and, if necessary, reduces the checkpoint-
ing frequency and the amount of memory checkpointed
periodically.

Recovery from Source Failure: The source and destina-
tion machines use a heartbeat mechanism to monitor each
other’s availability during live migration. When successive
heartbeat messages are not acknowledged by the source, the
destination concludes that either the source or the network
has failed and the restoration manager at the destination
triggers a VM recovery. If the checkpoint store is reachable
from the destination, then the restoration manager loads any
missing pages from the checkpoint store instead of the failed
source machine.

The VM recovery process in post-copy is live, during
which the VM is continuously running at the destination.
Therefore, the recovery mechanism does not impose any
significant additional downtime on post-copy, other than the
time for switching page transfers from the source machine
to the checkpoint store upon detecting source failure. On the
other hand, pre-copy migration keeps the VM running at the
source. Hence, if the source machine fails during pre-copy
migration then the VM’s recovery must be performed non-
live using the forward checkpoint saved in the checkpoint
store.

2.2 Reverse Incremental Checkpointing (RIC)

RIC aims to recover a VM when the destination or the
network fails during post-copy. (As mentioned earlier, these
two failures during pre-copy can be trivially handled by
continuing to run the VM at the source.) The first step
of post-copy is to transfer the VCPU state of the VM to
the destination. The VM is then resumed at the destina-
tion while concurrently receiving the VM’s memory pages
from the source. RIC superimposes a reverse incremental
checkpointing mechanism over this forward transfer of the
VM state. Specifically, once a VM is resumed at the des-
tination, RIC captures the VM’s initial execution state and
modified memory at the destination and transfers them to a
checkpoint store. Then onward, RIC saves any incremental
changes in the VM’s state to the checkpoint store, including
the execution state and any modified memory pages, either
periodically or upon any external I/O activity by the VM.
RIC stops once the migration succeeds.

To ensure the consistency of the reverse checkpoints,
RIC buffers packet transmissions from the VM to external
world between successive incremental checkpoints. The in-
coming network packets of the migrating VM are delivered
to the VM immediately, but the outgoing network packets
are buffered until the current reverse checkpoint is com-
mitted, after which any packets in the network buffer are
transmitted and the VM is resumed. This ensures that the
external world’s view of the VM does not change before the
corresponding checkpoint is committed to the checkpoint
store. Thus, if the destination or network fails during the
migration, RIC guarantees that the latest committed check-
point reflects a consistent state of the VM.

Overhead Reduction: To minimize impact on normal
post-copy migration, RIC executes concurrently with the
VM. The only time RIC affects the VM’s execution is when
the VCPUs are suspended briefly to capture the VM’s
execution state. The active-push phase of post-copy from
the source to the destination runs concurrently with the
RIC mechanism even when the VCPUs are paused. This



5

helps RIC to achieve similar total migration time as post-
copy. Periodic checkpointing may also impact the perfor-
mance of write-intensive VMs whose pages are dirtied often.
To reduce this impact, RIC performs VM checkpointing in
two stages. In Stage 1, RIC checkpoints only the modified
memory pages of the VM, but not its execution state (i.e., the
VM’s CPU and device states). The modified memory pages
are checkpointed without pausing the VM to avoid inter-
rupting the VM’s workloads. In Stage 2, the VM is paused
briefly to capture the VM’s execution state, after which
the VM resumes its execution. The committed checkpoint
contains the memory pages checkpointed in both stages. If
a memory page is checkpointed in both stages, then the
version checkpointed in Stage 1 is overwritten by that in
Stage 2 to ensure that the checkpoint contains the most
up-to-date page. Checkpointing in two stages significantly
reduces the performance impact compared to if the VM was
fully paused during memory capture.

Recovery from Destination or Network Failure Dur-
ing Post-Copy: The source and destination machines use
heartbeat messages to monitor the liveness and reachability
of each other. When successive heartbeat messages are not
acknowledged by the destination, the source concludes that
the migration has failed, either due to a destination failure
or a network partition, and the restoration manager at the
source machine triggers a VM recovery. The source machine
then recovers the VM by restoring the last consistent reverse
checkpoint of each memory page from the checkpoint store
onto the VM’s memory address space at the source. Pages
not modified by the destination do not need to be overwrit-
ten. Finally, the VM is resumed at the source from the latest
checkpointed execution state to complete the VM’s recovery.

3 IMPLEMENTATION DETAILS

We have implemented V-Recover in the KVM/QEMU [3],
[16] virtualization platform. Each VM is associated with a
userspace management process, called QEMU, which per-
forms device emulation and various management functions,
including live migration and checkpointing. A kernel mod-
ule, called KVM, uses hardware virtualization features and
coordinates with QEMU to execute the VM in guest mode
(or non-root mode). We modify pre-copy and post-copy
migration code in QEMU (about 1500 lines of new code) to
implement both FIC and RIC. The guest OS and applications
inside the VM are unmodified in our implementation.

3.1 FIC Implementation
FIC is implemented as a separate thread in QEMU on the
source machine and executes concurrently with the normal
execution of the VM prior to the start of downtime.

Dirty Page Tracking: FIC utilizes the dirty page tracking
mechanism in KVM/QEMU to identify modified memory
pages of a VM for forward checkpointing. The dirty page
tracking mechanism represents the VM’s memory content
as a bitmap, in which each bit specifies whether a guest
page has been modified or not since the last check. FIC uses
a separate bitmap, called ft bitmap, to identify the VM’s
memory pages modified during each checkpointing round.
During a VM’s normal execution, FIC makes an ioctl() call
to ask KVM to start dirty page tracking. In each forward

checkpointing cycle, FIC makes another ioctl() call to syn-
chronize the ft bitmap with the KVM’s bitmap to ensure that
ft bitmap reflects the latest VM state. FIC then captures the
modified memory pages by reading ft bitmap in QEMU and
transfers the memory pages to the checkpoint store. Just
before downtime begins, FIC uses the ft bitmap to capture
a final incremental checkpoint at the source.

Computing Available Bandwidth: As mentioned ear-
lier, FIC controls the checkpoint transfer rate based on
the available bandwidth. In FIC, the network usage of the
source machine is measured by capturing the total data
packets received and transmitted over the Ethernet interface
using the ifconfig utility, which provides statistics about
the network interface. The bandwidth monitoring module
on the source machine uses message queues to send the
available network bandwidth to the checkpoint transfer
thread running in QEMU. The checkpoint transfer thread
then estimates the maximum number of pages to transfer
based on bandwidth availability.

Source Failure Detection and Live Recovery: The des-
tination machine for a VM may be unknown until its mi-
gration is required. To reduce the recovery time, the check-
point staging machine periodically pre-loads and merges
incremental checkpoints from the checkpoint store to build
up the latest memory state. Source failure is detected by
the destination machine using heartbeat messages, as with
destination failure described earlier. Upon source failure,
the QEMU at the destination machine communicates with
the checkpoint store to identify pages that have not yet
been transferred to the destination by the failed source
machine. The checkpoint store then concurrently transfers
these missing pages to the destination, even as the VM
continues to execute at the destination.

3.2 RIC Implementation
Like FIC at the source machine, RIC is implemented as a
thread in QEMU on the destination machine. This thread ex-
ecutes concurrently with post-copy live migration and keeps
track of all modified memory pages and execution states of
the VM on the destination machine. Any pages modified by
the VM during post-copy migration are transferred to the
checkpoint store on another machine.

Capturing Modified Memory and Execution States: To
begin, RIC at the destination inserts a network barrier to
buffer outgoing network packets from the VM between suc-
cessive incremental checkpoints. The checkpointing thread
then periodically sends the incremental memory state of the
VM to the checkpoint store. Unlike in FIC , where dirty page
tracking is performed at the source machine to track mod-
ified memory pages, RIC performs dirty page tracking at
the destination machine. We modified the default post-copy
implementation in QEMU to perform dirty page tracking
at the destination. Once the VM resumes at the destination
during post-copy, the RIC thread in QEMU makes an ioctl()
call to request KVM to start dirty page tracking. To identify
any modified VM pages during each checkpointing cycle,
RIC uses another ioctl() call to retrieve the latest dirty page
bitmap from the KVM kernel module and updates another
bitmap maintained by QEMU in user space. RIC then trans-
fers the modified memory pages identified by the QEMU
bitmap to the checkpoint store.



6

The execution state of a VM consists of its VCPU and
I/O device states, which keep changing during the VM’s ex-
ecution at the destination. At the end of each checkpointing
cycle, RIC captures the execution state of the VM and writes
to a channel buffer (a QEMU facility to perform buffered
I/O operations) which then transfers the execution state to
the checkpoint store on the staging machine.

Reducing Performance Impact of RIC: We have also
implemented an event-based reverse checkpointing mechanism
to reduce network packet buffering latency. The event-based
approach checkpoints the VM’s state when either (a) an
external event is triggered, such as an outgoing network
packet transmission or other I/O from the VM, which
might alter the external world’s view of the VM, or (b)
when a significant amount of memory has been dirtied by
the VM. As a result, our event-based approach pauses the
VM for checkpointing only when necessary, as opposed to
periodic checkpointing, and hence reduces the impact on
VM’s performance.

The overhead of traversing the dirty bitmap and trans-
ferring each modified page to the remote checkpoint store
can potentially affect the VM’s performance during mi-
gration. To reduce this performance impact, instead of
sending checkpoints directly to the checkpoint store, the
checkpoint is first stored in an in-memory local store called
checkpoint stage at the destination and then transferred to
the external checkpoint store. This local checkpoint stage is
similar to Linux Kernel cache-slab [17], [18] and consists of a
vector of pointers that point to contiguous memory chunks.
Each memory chunk contains a series of page data and page
keys. Once all chunks are filled, the list is doubled, and
new chunks are allocated. First storing checkpointed state
locally reduces the performance impact on the VM caused
by synchronous network transmissions and provides the
assurance of completeness in checkpoint. Since this local
store contains the complete VM state, the VM can resume
while RIC concurrently transfers the checkpointed state to
the remote store and then releases any buffered network
packets.

Destination Failure Detection and VM Recovery: The
heartbeat module is implemented as a separate thread on
both the source and destination machines to continuously
monitor the availability of the other machine by sending
periodic network packets to each other. If the heartbeat
module does not receive a response for a specific timeout
interval, then a VM recovery is triggered to recover the VM
from the latest available consistent state.

Once a destination or network failure is detected in post-
copy, the restoration process on the source machine initiates
the VM’s recovery from the checkpoint store. The restoration
mechanism is non-live by nature because the VM was run-
ning on the destination machine when the migration failed.
The restoration process loads the incremental checkpoints
to rebuild the VM’s consistent memory image, which is
then memory mapped into QEMU’s address space. The
restoration process finally loads the most recent VCPU state
and resumes the VM.

3.3 Incremental Checkpoint Store
We consider several factors when selecting an external
checkpoint store for V-Recover. In order to quickly and con-

sistently store incremental checkpoints, the checkpoint store
should be an in-memory storage, provide duplicate filtering,
and allow for checkpoint versioning. Each checkpoint also
needs to be stored along with its version that represents the
most recently committed checkpoint. That way we can dis-
card incomplete checkpoints if a failure occurs in the middle
of a checkpoint. The checkpoint store was implemented
using the Redis [19] in-memory key-value store. The Redis
clients reside on the source and destination machines while
the Redis server resides on a checkpoint server which is
neither the source nor the destination machine. The memory
state of the checkpoint is stored in Redis as a key-value pair
in the map data structure where the offset and the address of
a page are used as a key to uniquely identify the page. Each
complete checkpoint per cycle is separated with a version
number to denote the checkpointing round.

As V-Recover may checkpoint multiple VMs running at
the source and destination machines, we need to be able
to distinguish the checkpoints for different VMs. To do so,
we use a separate checkpoint store instance to maintain the
memory state of each VM. The checkpoint store instances
are created in advance. When a VM starts, V-Recover selects
an available checkpoint store instance from the instance pool
and updates the availability status of the checkpoint store
to “unavailable.” When a VM terminates or completes the
migration, the corresponding checkpoint instance is cleared
and returned to the instance pool and the availability status
is updated to “free.” V-Recover also transfers memory pages
to Redis store in batches, rather than one at a time, to reduce
synchronization overhead on write requests.

4 EVALUATION

In this section, we show that V-Recover can recover a VM
from failures during live migration with acceptable perfor-
mance overheads. We focus on the following metrics.

• Total migration time: Time taken to transfer a VM’s
state entirely from the source machine to the destina-
tion machine.

• Downtime: Duration that a VM is not executing dur-
ing the live migration.

• Replication time: Time taken to transfer the checkpoint
to a checkpoint store.

• Application performance: Performance of applications
running inside the VM during live migration.

• Network bandwidth: Network bandwidth during mi-
gration and checkpointing.

• Recovery time: The time taken to restore the VM from
the last committed checkpoint after failure.

Our evaluation environment consists of dual six-core 2.1
GHz Intel Xeon machines with 128GB memory connected
through a Gigabit Ethernet switch with 1Gbps full-duplex
ports. To avoid network interference, separate network in-
terfaces are used for VM-generated traffic and management
traffic generated by live migration and checkpointing. VMs
are configured with one VCPU unless specified otherwise.
Virtual disks are accessed by VMs over a local area network
from an NFS server. Due to space constraints, we use post-
copy to evaluate both FIC and RIC. Each data point reported
is an average over five runs of each experiment.



7

1 2 3 4 5

Working set size (GB)

0

2

4

6

8

10

12

14

16

18

20

22

24
To

ta
l 
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

Post-copy

FIC

Fig. 4: Total migration time of write-intensive VM with FIC.

30 90 150 210 270 330 390 450 510 570 630 690

Time (s)

0

20000

40000

60000

80000

100000

120000

140000

O
p
e
ra

ti
o
n
s
 /

 s
e
c
o
n
d

Post-copy

FIC

Fig. 5: The impact of FIC on the CPU intensive workload.

4.1 Performance of FIC

4.1.1 Live Migration Performance

We first evaluate the overhead of FIC on the source machine
without triggering a migration failure. Figure 4 compares
the total migration time of a write-intensive VM using post-
copy with FIC versus vanilla post-copy. The figure shows
that FIC imposes a very small overhead of 1%–4% on total
migration time for write-intensive VMs. The corresponding
overhead for migrating idle VMs (not shown) is only 0.2%–
0.7%. The downtime with FIC is between 7.5ms to 11.7ms,
which is only slightly higher than vanilla post-copy (7ms–
11.6ms).

4.1.2 Impact on CPU-intensive Workload

We measured how FIC affects the performance of CPU-
intensive applications running inside the VM using a Quick-
sort benchmark, which is a CPU-intensive application. The
Quicksort benchmark repeatedly allocates 400MB of mem-
ory, writes random integers to the allocated memory seg-
ment, and sorts the integers using the Quicksort algorithm.
Figure 5 shows that the number of sorting operations per-
formed per second during migration is similar for both
FIC and vanilla post-copy. At downtime there is a sharp but
similar reduction in Quicksort performance for both FIC and
post-copy. This shows that FIC does not have an observable
impact on CPU-intensive workloads.

Fig. 6: Impact of FIC on iPerf bandwidth during migration.

4.1.3 Impact on Network-intensive Workload
To measure the impact of FIC on network-intensive VM
workloads we used iPerf [20], a network-intensive bench-
mark, to measure the network throughput from the VM
before and during the migration. The iPerf server runs on an
external machine (i.e., neither source nor destination) in the
same cluster and the iPerf client resides inside the VM being
migrated. The iPerf client continuously sends data to the
server through a TCP connection. The measured network
bandwidth is reported by iPerf every second. Figures 6
shows the measured network bandwidth of iPerf client
before, during, and after the migration, when migrating
a 1GB VM. The checkpoint interval is set to 50 seconds
for better visualization of the bandwidth fluctuations. The
figure shows that, during the first checkpointing round
of FIC, when the entire memory state is transferred to
the destination, the bandwidth reported by iPerf client
drops from 940Mbps to 580Mbps for about 20 seconds.
Subsequent incremental checkpoints are shorter in duration
and consequently the bandwidth drops are also shorter. In
addition, just before the migration starts, the final check-
point is transferred in parallel to the live migration, which
leads to contention on the outgoing network link on the
source machine. Therefore, we see a slightly longer network
bandwidth drop in FIC than vanilla post-copy. We also
measured the iPerf bandwidth for larger VMs on the source
machine. The results are similar except that when the VM
size increases, the duration of the network bandwidth drop
in the first checkpointing round also increases.

4.1.4 Impact on Concurrent Migrations
Earlier, we discussed the possibility of FIC for one VM
impacting the migration of another VM due to network
contention. To address this issue, FIC dynamically adjusts
its checkpointing speed based on the available bandwidth
to minimize impact on other migrations. Figure 7 shows
that the time taken to migrate an idle VM using post-copy
during which another co-located VM is checkpointed using
FIC. The checkpoint interval is 50 seconds, and the size of
the VM ranges from 1GB to 8GB. The figure shows that
FIC imposes 0.3%–1% overhead on the total migration time.
For write-intensive concurrent VMs, FIC similarly imposes
an overhead of 0.4%–1.9% on total migration time.

4.1.5 Recovering From Source Failure in post-copy
We now consider the scenario of recovering a VM when
the source machine fails during post-copy migration. In this



8

1 2 3 4 5 6 7 8

VM size (GB)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
To

ta
l 
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

Post-copy
FIC

Fig. 7: FIC impact on concurrent migration of another VM.

1 2 3 4 5 6 7 8

VM size (GB)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

L
o
a
d
e
d
 p

a
g
e
 (

x
1
0
0
0
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fa
il
o
v
e
r 

ti
m

e
 (

m
s
)

Failover time

#Loaded pages

Fig. 8: Recovering a VM after source failure with FIC .

scenario, since the VM’s latest memory state is saved over
multiple incremental checkpoints by FIC, the final VM’s
memory state needs to be merged from all the incremental
checkpoints. Figure 8 plots the recovery time of FIC and
the number of loaded memory pages for migrating an idle
VM. As expected, as the VM size increases, it takes longer
time to transfer and merge the incremental checkpoints and
hence the time taken to recover the VM also increases.
The recovery time varies from around 3 seconds for a 1GB
VM to around 10 seconds for a 8GB VM. Note that this
VM recovery is live for source failures because the VM
keeps executing at the destination node during recovery. To
further hide the cost of recovery, one could also perform the
merge ahead of time before a failure occurs, though at the
expense of additional computation.

4.2 Performance of RIC
4.2.1 Live Migration Performance
Figure 9 compares the total migration time of a write-
intensive VM using post-copy with RIC versus vanilla post-
copy. The write-intensive VM executes a program that con-
tinuously writes random numbers to a large region of main
memory. The working set size (i.e., size of the memory
written) is varied from 1GB to 5GB. The figure shows that
the total migration time of post-copy with and without
RIC are almost the same. This is because in post-copy, the
source machine actively pushes pages to the destination
even when the VCPUs are paused at the destination (due
to demand-paging or RIC), thus allowing these operations

1 2 3 4 5

Working Set Size (GB)

0

10

20

30

40

50

60

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
) Post-copy

RIC

Fig. 9: Impact of RIC on total migration time when migrating
a write-intensive VM.

(a)

1 2 3 4 5

Working Set Size (GB)

0

10

20

30

40

50

60

T
im

e
 (

s
)

Downtime
Replication time 

(b)
Fig. 10: Cumulative downtime and replication time of
RIC for migrating (a) idle VM and (b) write-intensive VM.

to complete concurrently. Similar results are observed for
migrating an idle VM and hence not shown.

Figure 10(a) shows the cumulative downtime and repli-
cation time of migrating idle VMs using RIC. The cumu-
lative downtime is the sum of all the times that the VM
is paused by RIC during migration. We purposely chose an
aggressive checkpointing interval of 100µs to stress test RIC.
The cumulative downtime with RIC ranges between 1.1s
and 1.9s. For longer checkpointing intervals, the cumula-
tive downtime will correspondingly reduce. As discussed
earlier, RIC is split into two stages and only Stage 2 requires
pausing the VM. Vanilla post-copy pauses the VM only once
at the start of migration and hence it has a downtime of
only 9ms–11.6ms. The figure also shows that the replication
time increases with increasing VM size. Figure 10 (b) shows
the cumulative downtime and replication time of RIC for
migrating a write-intensive VM. The cumulative downtime



9

5 10 15 20 25 30 35 40 45 50

Time (s)

0

20000

40000

60000

80000

100000

120000

140000
O

p
e
ra

ti
o
n
s
 /

 s
e
c
o
n
d

RIC
Post-copy

Fig. 11: Impact of RIC on CPU-intensive workload.

remains fairly stable between 1.8s and 2.2s. The figure also
shows that the replication time increase when the working
set size increases due to an increase in the number of dirty
pages that need to be checkpointed by RIC.

4.2.2 Impact on CPU-intensive Workload

We measured how RIC affects the performance of applica-
tions running inside the VM using a Quicksort benchmark
(described in Section 4.1.2). Figure 11 shows that the number
of sorts performed per second is constant in both RIC and
post-copy except that there is a sudden reduction in the
performance at downtime. RIC and post-copy also have
similar performance during the migration, which means
that the reverse incremental checkpointing does not impose
observable overhead on the application performance.

4.2.3 Checkpointing Frequency

Figure 12(a) shows the total migration time of migrating
a VM running the STREAM [21] benchmark when the
checkpointing interval is varied between 0.1ms and 100ms.
Checkpointing interval 0 refers to the vanilla post-copy
migration. STREAM is an industry standard for measuring
the sustained memory bandwidth and the corresponding
computation rate for simple vector kernels. STREAM allo-
cates 1.5GB of array elements, runs 50 iterations on each
vector kernel, and continuously executes during the VM
migration. The figure shows that RIC does not incur any
overhead compared to the post-copy. Figure 12(b) shows
that when the checkpoint interval increases, the downtime
decreases. As checkpointing is performed less frequently the
overhead of bitmap synchronization, state transfer, network
buffering, and pausing the VCPUs also decrease. The figure
also shows that, when the checkpoint interval increases,
more pages are dirtied during the interval. We also mea-
sured the impact of varying the checkpointing interval on
the total migration time and downtime of migrating idle
VM and write-intensive VM. The results are similar to the
above. Finally, we measured the impact of the checkpointing
interval on the performance of applications running inside
the VM using the Sysbench [22] CPU-intensive workload
during VM migration. Sysbench reports the time taken to
find the 20, 000th prime number. Our experimental results
show that the checkpointing interval has little to no effect on
the execution time of Sysbench (about 45s for all intervals).

0 0.1 1 10 100

Checkpoint Interval (ms)

50

51

52

53

54

55

To
ta

l 
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

(a)

0.1 1 10 100

Checkpoint Interval (ms)

0

20

40

60

80

100

120

C
h
e
c
k
p
o
in

te
d
 P

a
g
e
s
 (

x
1

0
0

0
)

0

100

200

300

400

500

600

D
o
w

n
ti

m
e
 (

m
s
)

Downtime #Pages

(b)
Fig. 12: The impact of checkpointing interval on (a) total
migration time and (b) downtime and checkpointed page
count for RIC with the STREAM benchmark.

!" #" $" %" &"" &!" &#" &$" &%" !"" !!" !#" !'%

()*+,-./

"

&"""

!"""

0"""

#"""

'"""

(
1
23
4
5
1
6
4
7,
-8
6
+
29
7)
3
:
.
;.
/

<3.7=>36?
@A+:7=B9.+C
D3:7):34.,Continuous

Fig. 13: YCSB throughput variation during migration.

4.2.4 Packet Buffering and Release

We now consider the impact of packet buffering and release
on application throughput and latency when using RIC.
Using Redis [19] and Yahoo Cloud Serving Benchmark
(YCSB) [23], we generated outgoing and incoming network
packets as query requests and responses. Redis is a key
value in-memory database that runs on an external machine.
YCSB is a database benchmark client that resides in the
migrating VM and interacts with Redis. Redis first loads
its database. Then YCSB client queries 1GB of data using
update operations (read/update ratio is 50/50) while the
VM is being live migrated. Figure 13 and Figure 14 show
throughput and latency variation, respectively. Both figures
show that, during the downtime, there is a sudden drop
in the throughput and increase in latency. However, event-
based checkpointing has more consistent throughput and
lower latency degradation than continuous checkpointing.
This is because, in event-based checkpointing, requests are



10

20 40 60 80 100 120 140 160 180 200 220 240 258

Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800
U

p
d
a
te

 L
a
te

n
c
y
(u

s
)

Post-copy
Event-based
Continous 

Fig. 14: YCSB latency variation during migration.

! " # $ %& %! %" %# %$ !& !! !" !# !$ '& '! '" '# '$ "& "! "" "#

()*+,-./

&

&0&&!

&0&&"

&0&&#

&0&&$

&0&%

&0&%!

&0&%"

&0&%#

&0&%$

1
2
+
34
5
+
,6
7
+
38
,3
+
.
9
:
;
.
+
,(
)*

+
,-
*
.
/

<:.=>?:98
@2+;=>A4.+B
C:;=);:7.Continuous

Fig. 15: Impact on Sysbench OLTP response time of post-
copy with continuous and event-based RIC.

not buffered unless an event occurs, while in continu-
ous checkpointing, requests are periodically buffered every
checkpoint interval.

We also measured packet buffering and release over-
head when running Sysbench Online Transaction Processing
(OLTP) benchmarking tool. We ran a MYSQL server inside
the VM and queried the database using a Sysbench client
from an external host. Figure 15 shows the average query
response time over 50 seconds during live migration. In this
setting, query requests are incoming network requests as
seen by the VM. Even though we do not buffer incoming
network packets, query responses are treated as outgoing
packets with respect to the VM. The figure shows that,
during live migration, event-based checkpointing has lower
average response time compared to continuous checkpoint-
ing. Once the migration completes, both response times
gradually converge to that of vanilla post-copy.

4.2.5 Network Overhead and Recovery Time
Next, we evaluate the network overhead of RIC. Figure 16
shows total checkpointed page count when migrating a
write-intensive VM with working set size of 5GB when the
checkpointing interval is varied from 0.1ms to 100ms. The
checkpointed page count reduces when the checkpointing
interval increases. Since the same page may be dirtied multi-
ple times, longer checkpointing interval reduces the number
of times that a dirtied page needs to be checkpointed.

Next we varied the number of checkpointed pages with
RIC and captured the time taken to restore the VM on the
source when migrating a write-intensive VM. As expected,
Figure 17 shows that the recovery time with RIC increases

0.1 1 10 100

Checkpoint interval (ms)

0

10000

20000

30000

40000

50000

To
ta

l 
C

h
e
c
k
p
o
in

te
d
 p

a
g
e
s

Fig. 16: Checkpointed pages vs. checkpoint interval in RIC .

> 1000 > 4000 > 6000 > 10000 >20000

Checkpoint Size (# pages)

0

50

100

150

200

250

Fa
il
o
v
e
r 

T
im

e
 (

m
s
)

Fig. 17: Recovery time vs. checkpoint size with RIC.

when the checkpoint size increases. Even with 20,000 check-
pointed pages, the recovery time is only around 200ms.

5 RELATED WORK

To the best of our knowledge, V-Recover is the first approach
to address recovery from failures during live migration. Live
migration mechanisms in Google’s datacenters [8] compare
memory checksums of a migrating VM at the source and
destination machines to detect memory corruption during
migration. The VM is discarded if the checksums do not
match. QEMU supports a feature called PostcopyRecov-
ery [24] that allows an ongoing post-copy migration to be
resumed once a broken network connection between the
source and destination is restored. However it does not sup-
port recovering the VM when the source or the destination
fail, or the network connection cannot be reestablished.

As mentioned earlier, our conference paper in IEEE
Infocom 2019 [12] addressed the problem of destination and
network failure during post-copy. This paper significantly
extends the conference version by addressing source failures
via FIC as well as conducting extensive additional evalua-
tions using several benchmarks.

All major virtualization platforms [3], [4], [25] support
VM checkpointing and restoration. Checkpointing can be
performed at either the application-level [26], [27] or VM-
level [13], [14], [28], [29], [30], [31], [32], [33], [34]. Compared
to application specific checkpointing schemes, whole system
checkpoints provide a cleaner and more complete encapsu-
lation of application state. Checkpointing-based VM fault
tolerance can be performed using active-passive and active-
active approaches. In active-passive approaches [13], [35],



11

[36], a VM’s state is regularly checkpointed on a backup
machine’s memory or disk. When the primary VM or ma-
chine fails then the VM image on the backup machine is
activated. In active-active replication [14], [28], [37], [38],
[39], [40], [41], [42], [43], [44], the primary and backup VMs
execute in consistent lockstep. Record/replay mechanisms
can record external events at a primary VM and replay those
events on a backup VM to ensure that a consistent replica
is always available. Event recording can be performed by
the hypervisor but deterministic replay can be difficult on
multi-core CPUs. In contrast to the above efforts which
guard against failures during a VM’s normal execution, V-
Recover uses incremental checkpointing to guard against
failures during live migration.

Live migration itself can also be used as a fault-tolerance
technique. One can quickly migrate a VM upon imminent
failure of a source machine [45], [46], [47]. One can also
use process migration [48], [49], [50], [51] for fault toler-
ance, though at the risk of leaving residual dependencies
in the source machine. Some techniques [52], [53], [54]
perform fast intra-host live migration to handle hypervisor
updates/failures by co-mapping a VM’s memory to a new
co-located VM. However the above techniques do not ad-
dress the failure of live migration mechanism itself. Several
techniques [55], [56], [57], [58], [59] estimate the required
bandwidth for live migration based on the system’s resource
usage. V-Recover also adapts to available bandwidth to
avoid network contention with colocated VMs.

6 CONCLUSION

In this paper, we presented V-Recover, a mechanism to
seamlessly recover a virtual machine when live migration
mechanism fails due to source, destination, or network fail-
ure. V-Recover incorporates a forward incremental check-
pointing mechanism to recover from source machine fail-
ures and a reverse incremental checkpointing mechanism
to recover from destination machine or network failures.
We described the design, implementation, and evaluation of
V-Recover on the KVM/QEMU platform. Our evaluations
show that V-Recover can effectively recover a VM upon mi-
gration failure with acceptable overheads on live migration
metrics and performance.

7 ACKNOWLEDGEMENTS

This work is supported in part by National Science Founda-
tion, USA, via awards 1320689, 1527338, and 1738929.

REFERENCES

[1] M. Nelson, B. H. Lim, and G. Hutchins, “Fast transparent migra-
tion for virtual machines,” in Proc. of USENIX Annual Technical
Conference (ATC), April 2005.

[2] VMWare Inc., “vSphere vMotion.” [Online]. Available: https:
//www.vmware.com/pdf/vmotion datasheet.pdf

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
The Linux virtual machine monitor,” in Proc. of Linux Symposium,
June 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, Oct. 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[6] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,”
in Proc. of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), May 2005.

[7] Microsoft Corporation, “Hyper-V Architecture.” [Online].
Available: https://docs.microsoft.com/en-us/virtualization/
hyper-v-on-windows/reference/hyper-v-architecture

[8] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak,
M. Krebs, M. Baker-Harvey, and T. Sanderson, “VM Live Migra-
tion At Scale,” in Proc. of ACM International Conference on Virtual
Execution Environments (VEE), 2018, pp. 45–56.

[9] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proc. of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[10] M. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migra-
tion of virtual machines,” ACM SIGOPS Operating Systems Review,
vol. 43, no. 9, pp. 14–26, July 2009.

[11] M. R. Hines and K. Gopalan, “Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-
ballooning,” in Proc. of ACM International Conference on Virtual
Execution Environments (VEE), 2009.

[12] D. Fernando, J. Terner, K. Gopalan, and P. Yang, “Live migration
ate my VM: Recovering a virtual machine after failure of post-
copy live migration,” in Proc. of IEEE International Conference on
Computer Communications (INFOCOM), 2019.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: High availability via asynchronous virtual
machine replication,” in Proc. of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008, pp. 161–174.

[14] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan,
“Colo: Coarse-grained lock-stepping virtual machines for non-
stop service,” in Proc. of ACM Symposium on Cloud Computing
(SOCC), 2013.

[15] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redun-
dant arrays of inexpensive disks (RAID),” ACM SIGMOD Record,
vol. 17, no. 3, pp. 109–116, Jun. 1988.

[16] F. Bellard., “QEMU, a fast and portable dynamic translator,” in
Proc. of USENIX Annual Technical Conference (ATC), April 2005.

[17] J. Mauro and R. McDougall, Solaris internals: core kernel components.
Sun Microsystems Press, A Prentice Hall Title, 2001.

[18] J. Bonwick and J. Adams, “Magazines and Vmem: Extending the
slab allocator to many CPUs and arbitrary resources,” in Proc. of
USENIX Annual Technical Conference (ATC), 2001.

[19] Redis Ltd., “Introduction to Redis.” [Online]. Available:
https://redis.io/docs/about/

[20] Iperf. [Online]. Available: https://iperf.fr
[21] J. D. McCalpin, “Memory bandwidth and machine balance in cur-

rent high performance computers,” IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25,
Dec. 1995.

[22] Sysbench. [Online]. Available: https://en.wikipedia.org/wiki/
Sysbench

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. of
ACM Symposium on Cloud Computing (SOCC), 2010.

[24] QEMU Wiki, “PostcopyRecovery.” [Online]. Available: https:
//wiki.qemu.org/Features/PostcopyRecovery

[25] C. Chaubal, “Architecture of VMware ESXi,” VMWare White
Paper, Oct. 2008. [Online]. Available: https://www.vmware.com/
techpapers/2007/architecture-of-vmware-esxi-1009.html

[26] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
process-level live migration in HPC environments,” in Proc. of the
ACM/IEEE Conference on Supercomputing (SC), 2008.

[27] D. Marques, G. Bronevetsky, R. Fernandes, K. Pingali, and
P. Stodghill, “Optimizing checkpoint sizes in the C3 system,”
in Proc. of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2005.

[28] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proac-
tive fault tolerance for HPC with Xen virtualization,” in Proc. of the
ACM International Conference on Supercomputing (ICS), 2007.

[29] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault tolerance man-
agement in cloud computing: A system-level perspective,” IEEE
Systems Journal, vol. 7, no. 2, pp. 288–297, June 2013.

[30] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proac-
tive fault tolerance using preemptive migration,” in Euromicro



12

International Conference on Parallel, Distributed and Network-based
Processing (PDP), 2009.

[31] E. Park, B. Egger, and J. Lee, “Fast and space-efficient virtual
machine checkpointing,” in Proc. of ACM International Conference
on Virtual Execution Environments (VEE), 2011.

[32] M. Lu and T. Chiueh, “Fast memory state synchronization for
virtualization-based fault tolerance,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2009.

[33] A. Kangarlou, P. Eugster, and D. Xu, “VNsnap: Taking snapshots
of virtual networked infrastructures in the cloud,” IEEE Transac-
tions on Services Computing, vol. 5, no. 4, pp. 484–496, 2012.

[34] Y. Kwon, M. Balazinska, and A. Greenberg, “Fault-tolerant stream
processing using a distributed, replicated file system,” Proc. of
VLDB Endowment, vol. 1, no. 1, Aug. 2008.

[35] M. Hines, “Micro checkpointing.” [Online]. Available: https:
//wiki.qemu.org/Features/MicroCheckpointing

[36] C. Wang, X. Chen, W. Jia, B. Li, H. Qiu, S. Zhao, and
H. Cui, “PLOVER: Fast, multi-core scalable virtual machine fault-
tolerance,” in Proc. of USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[37] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design
of a practical system for fault-tolerant virtual machines,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 4, pp. 30–39, 2010.

[38] C. Wang, X. Chen, Z. Wang, Y. Zhu, and H. Cui, “A fast, gen-
eral storage replication protocol for active-active virtual machine
fault tolerance,” in IEEE International Conference on Parallel and
Distributed Systems (ICPADS), 2017.

[39] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual
machine synchronization for fault tolerance,” in Proc. of USENIX
Annual Technical Conference (ATC), 2008, (Poster Session).

[40] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault toler-
ance,” in Proc. of ACM Symposium on Operating Systems Principles
(SOSP), 1995.

[41] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: Enabling intrusion analysis through virtual-machine log-
ging and replay,” ACM SIGOPS Operating Systems Review, vol. 36,
pp. 211–224, Dec. 2002.

[42] G. W. Dunlap, “Execution replay for intrusion analysis,” Ph.D.
dissertation, University of Michigan, USA, 2006.

[43] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in Proc. of USENIX
Annual Technical Conference (ATC), 2005.

[44] M. Xu, R. Bodik, and M. D. Hill, “A ”flight data recorder” for
enabling full-system multiprocessor deterministic replay,” in Proc.
of International Symposium on Computer Architecture (ISCA), 2003.

[45] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan, “Fast
server deprovisioning through scatter-gather live migration of
virtual machines,” in Proc. of IEEE International Conference on Cloud
Computing, 2014.

[46] U. Deshpande, D. Chan, S. Chan, K. Gopalan, and N. Bila, “Scatter-
gather live migration of virtual machines,” IEEE Transactions on
Cloud Computing, vol. 6, no. 1, pp. 196–208, 2018.

[47] D. Fernando, H. Bagdi, Y. Hu, P. Yang, K. Gopalan, C. Kamhoua,
and K. Kwiat, “Quick eviction of virtual machines through proac-
tive live snapshots,” in Proc. of International Conference on Utility
and Cloud Computing (UCC), 2016, pp. 99–107.

[48] A. Barak and R. Wheeler, “MOSIX: An integrated UNIX for mul-
tiprocessor workstations,” International Computer Science Institute
Technical Report TR 88-004, Oct. 1988.

[49] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and
B. B. Welch, “The Sprite network operating system,” Computer,
vol. 21, no. 2, pp. 23–36, Feb. 1988.

[50] R. F. Rashid and G. G. Robertson, “Accent: A communication
oriented network operating system kernel,” in Proc. of ACM Sym-
posium on Operating Systems Principles (SOSP), 1981.

[51] S. Mullender, G. van Rossum, A. Tananbaum, R. van Renesse, and
H. van Staveren, “Amoeba: A distributed operating system for the
1990s,” Computer, vol. 23, no. 5, pp. 44–53, May 1990.

[52] S. Doddamani, P. Sinha, H. Lu, T.-H. K. Cheng, H. H. Bagdi,
and K. Gopalan, “Fast and live hypervisor replacement,” in Proc.
of ACM International Conference on Virtual Execution Environments
(VEE), 2019.

[53] H. Bagdi, R. Kugve, and K. Gopalan, “Hyperfresh: Live refresh
of hypervisors using nested virtualization,” in Proceedings of Asia-
Pacific Workshop on Systems (APSys), 2017.

[54] P. K. Sinha, S. S. Doddamani, H. Lu, and K. Gopalan, “mWarp: Ac-
celerating intra-host live container migration via memory warp-

ing,” in Proc. of IEEE International Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2019.

[55] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Pod-
dar, and A. Iyer, “Remedy: Network-aware steady state VM
management for data centers,” in IFIP International Conference on
Networking, 2012, pp. 190–204.

[56] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migra-
tion planning in software-defined networks,” IEEE Transactions on
Cloud Computing, pp. 1–1, 2017.

[57] H. Liu and B. He, “VMbuddies: Coordinating live migration of
multi-tier applications in cloud environments,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 4, pp. 1192–1205,
2015.

[58] D. Fernando, P. Yang, and H. Lu, “SDN-based order-aware live
migration of virtual machines,” in Proc. of IEEE International Con-
ference on Computer Communications (INFOCOM), 2020.

[59] H. Li, G. Xiao, Y. Zhang, P. Gao, Q. Lu, and J. Yao, “Adaptive live
migration of virtual machines under limited network bandwidth,”
in Proc. of ACM International Conference on Virtual Execution Envi-
ronments (VEE), 2021.

Dinuni Fernando is a Senior Lecturer at Uni-
versity of Colombo School of Computing. She
received her Ph.D. from Computer Science
Department at Binghamton University. Her re-
search interests include virtualization, networks,
and security.

Jonathan Terner received his B.S. in Com-
puter Science from Binghamton University. He
is presently a GNR Core Software Developer at
IBM and is also pursuing an MS in Computer
Science from Georgia Tech.

Ping Yang is an Associate Professor in Com-
puter Science Department at Binghamton Uni-
versity and the Director of the Center for Infor-
mation Assurance and Cybersecurity. She re-
ceived her Ph.D. from Stony Brook University.
Her research interests include virtualization and
AI-based security.

Kartik Gopalan is a Professor in Computer Sci-
ence Department at Binghamton University. He
received his Ph.D. from Stony Brook University.
His research interests are in virtualization, cloud
computing, security, operating systems, and net-
works.


