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Motivation: 
VM Eviction Time

Live VM Migration: Transfer of a running VM between hosts!

VCPU, Memory, (Disk), and (Network state)!

Traditional metrics!

Downtime, Total Migration Time, Network Overhead, Application performance!

We consider a new metric!

VM Eviction time: Time to completely evict a VM’s state from the source.!

Why is it important?!

Quickly eliminate hotspots by moving out VMS!

Opportunistic power saving by turning off servers!

Quickly de-provision less important VMs to accommodate more important ones!

Emergency maintenance; handling imminent failures
2



Coupling of Source and 
Destination
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Fig. 1. Total migration time of a single idle VM. The destination host is
either idle or runs two busy VMs running Tunkrank (indicated in braces).
The memory pressure at the destination is controlled by varying the available
DRAM from 12GB (high memory pressure) to 16GB (low memory pressure).
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Fig. 2. In traditional pre-copy and post-copy migration, the VM’s pages are
transferred through a direct TCP connection between the Migration Managers
at the source and destination machines.

memory size from the source to the destination. The source
host only performs migration of an idle VM and nothing
else, whereas the destination host faces varying degrees of
resource pressure. The destination host runs two VMs of 5GB
memory size, each of which runs the Tunkrank graph analytics
benchmark from the CloudSuite [12] package. Tunkrank is a
memory and CPU-intensive benchmark which determines a
Twitter user’s influence based on the followers. Tunkrank uses
a 1.3GB Twitter database as input, which generates a runtime
memory pressure of around 4GB per VM.

We increase the available DRAM at the destination from
12GB to 16GB in 1GB increments (using boot-time options),
thus decreasing the memory pressure. Figure 1 shows the
eviction time measured when using both pre-copy and post-
copy. With idle destination (16GB DRAM), both pre-copy and
post-copy yield low eviction times. However the eviction time
for both the migration techniques increases by around 600%
(from 52 seconds to 328 seconds) as the memory pressure
increases at the destination (as DRAM is reduced from 16GB
to 12GB). During the VM’s migration, its memory pages are
transferred to the destination. When the destination doesn’t
have enough free memory for the incoming VM, the host OS
responds by swapping out the pages of the busy VMs running
Tunkrank. The time spent in reclaiming the memory pages
to create free space for the incoming VM at the destination
increases the eviction time at the source. Note that if, instead
of being idle, the migrating VM was running a write-intensive
workload, then the eviction time of pre-copy would be worse.

IV. ARCHITECTURE OF SCATTER-GATHER MIGRATION

In traditional live VM migration, as shown in Figure 2, the
source would directly transfer the VM’s state to the destination
through a TCP connection, which carries both data (VM’s
memory and CPU state) and control information (handshakes,
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Fig. 3. Scatter-Gather migration: VM’s pages are transferred through
intermediate hosts using VMD. A direct TCP connection between the source
and destination carries control and demand-paging information.

synchronization, etc.) This direct TCP connection would last
until the destination receives the entire VM.

In the Scatter-Gather approach, as shown in Figure 3,
the source and destination exchange bulk of VM’s memory
through intermediate hosts I1 ... IN . Only the VM’s CPU
execution state, any demand-paged memory, and control in-
formation, are exchanged through a direct TCP connection
between the source and destination. This connection lasts only
until the source evicts the entire VM. The source and desti-
nation run Migration Managers for each VM being migrated.
In KVM/QEMU platform, the Migration Manager is part of
QEMU – a multi-threaded user-level process, one for each
VM, that mediates between the VM and the hypervisor besides
carrying out VM migration.

A Virtualized Memory Device (VMD) layer, aggregates
the free memory of all intermediate hosts and presents the
collection as block device to the Migration Managers at the
source and the destination. While the VMD layer is strictly
optional for Scatter-Gather migration, it simplifies the overall
system design, as we will describe in Section V-A.

A. Scatter Phase
The goal of the scatter phase is to quickly evict the VM’s

memory and execution state from the source host. This phase
is executed at the source host. First, a control TCP connection
is established between the source and the destination. Next,
the VM’s CPU state is transferred to the destination where
the VM is resumed immediately. Since the VM’s memory still
resides at the source host, the VM would start generating page-
faults as it accesses its memory. The destination’s Migration
Manager sends all requests for the faulted pages to the source’s
Migration Manager over the control TCP connection, which
then responds with the faulted page. This step is similar to the
demand-paging component of traditional post-copy migration.
Simply relying on demand-paging would be terribly slow.

To speed up the eviction of VM’s memory, the Migration
Manager at the source also actively transfers the VM’s pages
out of the source host to intermediate hosts. The Migration
Manager opens the block device exported by the VMD as a
file and sequentially writes the VM’s memory pages to this
file. However, the VMD simply represents an aggregation of
the memory of intermediate hosts. Thus the VMD layer at the

3

Traditionally!

Eviction time = Total Migration Time!

Source cannot eliminate the outgoing VM’s state until target 
receives the entire VM.



Pre-Copy!

!

!

Post-Copy!

Pre-copy and Post-copy

1st Iteration 
Transfers entire memory

2nd Iteration 
Dirty Pages

Downtime
Preparation (live) Resume 

time

Active Push  + Demand Paging

Downtime
Resume Time (live)Preparation 

(live)

(Non-pageable 
Memory)



Impact of Destination 
Resource Pressure

5
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Fig. 1. Total migration time of a single idle VM. The destination host is
either idle or runs two busy VMs running Tunkrank (indicated in braces).
The memory pressure at the destination is controlled by varying the available
DRAM from 12GB (high memory pressure) to 16GB (low memory pressure).
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Fig. 2. In traditional pre-copy and post-copy migration, the VM’s pages are
transferred through a direct TCP connection between the Migration Managers
at the source and destination machines.

memory size from the source to the destination. The source
host only performs migration of an idle VM and nothing
else, whereas the destination host faces varying degrees of
resource pressure. The destination host runs two VMs of 5GB
memory size, each of which runs the Tunkrank graph analytics
benchmark from the CloudSuite [12] package. Tunkrank is a
memory and CPU-intensive benchmark which determines a
Twitter user’s influence based on the followers. Tunkrank uses
a 1.3GB Twitter database as input, which generates a runtime
memory pressure of around 4GB per VM.

We increase the available DRAM at the destination from
12GB to 16GB in 1GB increments (using boot-time options),
thus decreasing the memory pressure. Figure 1 shows the
eviction time measured when using both pre-copy and post-
copy. With idle destination (16GB DRAM), both pre-copy and
post-copy yield low eviction times. However the eviction time
for both the migration techniques increases by around 600%
(from 52 seconds to 328 seconds) as the memory pressure
increases at the destination (as DRAM is reduced from 16GB
to 12GB). During the VM’s migration, its memory pages are
transferred to the destination. When the destination doesn’t
have enough free memory for the incoming VM, the host OS
responds by swapping out the pages of the busy VMs running
Tunkrank. The time spent in reclaiming the memory pages
to create free space for the incoming VM at the destination
increases the eviction time at the source. Note that if, instead
of being idle, the migrating VM was running a write-intensive
workload, then the eviction time of pre-copy would be worse.

IV. ARCHITECTURE OF SCATTER-GATHER MIGRATION

In traditional live VM migration, as shown in Figure 2, the
source would directly transfer the VM’s state to the destination
through a TCP connection, which carries both data (VM’s
memory and CPU state) and control information (handshakes,
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Fig. 3. Scatter-Gather migration: VM’s pages are transferred through
intermediate hosts using VMD. A direct TCP connection between the source
and destination carries control and demand-paging information.

synchronization, etc.) This direct TCP connection would last
until the destination receives the entire VM.

In the Scatter-Gather approach, as shown in Figure 3,
the source and destination exchange bulk of VM’s memory
through intermediate hosts I1 ... IN . Only the VM’s CPU
execution state, any demand-paged memory, and control in-
formation, are exchanged through a direct TCP connection
between the source and destination. This connection lasts only
until the source evicts the entire VM. The source and desti-
nation run Migration Managers for each VM being migrated.
In KVM/QEMU platform, the Migration Manager is part of
QEMU – a multi-threaded user-level process, one for each
VM, that mediates between the VM and the hypervisor besides
carrying out VM migration.

A Virtualized Memory Device (VMD) layer, aggregates
the free memory of all intermediate hosts and presents the
collection as block device to the Migration Managers at the
source and the destination. While the VMD layer is strictly
optional for Scatter-Gather migration, it simplifies the overall
system design, as we will describe in Section V-A.

A. Scatter Phase
The goal of the scatter phase is to quickly evict the VM’s

memory and execution state from the source host. This phase
is executed at the source host. First, a control TCP connection
is established between the source and the destination. Next,
the VM’s CPU state is transferred to the destination where
the VM is resumed immediately. Since the VM’s memory still
resides at the source host, the VM would start generating page-
faults as it accesses its memory. The destination’s Migration
Manager sends all requests for the faulted pages to the source’s
Migration Manager over the control TCP connection, which
then responds with the faulted page. This step is similar to the
demand-paging component of traditional post-copy migration.
Simply relying on demand-paging would be terribly slow.

To speed up the eviction of VM’s memory, the Migration
Manager at the source also actively transfers the VM’s pages
out of the source host to intermediate hosts. The Migration
Manager opens the block device exported by the VMD as a
file and sequentially writes the VM’s memory pages to this
file. However, the VMD simply represents an aggregation of
the memory of intermediate hosts. Thus the VMD layer at the

Source migrating a 5GB idle VM!

Destination running two 5GB VMs running Tunkrank with 4GB memory footprint.!

Eviction time is 6X longer when destination memory = 12GB!

Similar effects when other resources are constrained at the destination!

CPU cores busy!

Network interface under contention



State of the Art
Lowering Total Migration Time!

Ballooning, compression, dropping the guest cache, deduplication!

Orthogonal to our approach!

Checkpoint/Restore!

Typically non-live; restore follows checkpoint; large downtime!

Remus does high-frequency checkpointing for high availability; quick 
restoration but large runtime overhead for write-intensive apps; doubles 
memory usage.!

Post-copy Migration!

Quickly offloads VM’s CPU state to destination.!

Memory follows from the source!

Snowflock, Jettison, Reactive consolidation use post-copy



Solution: Scatter-
Gather VM Migration

Scatter VM memory to intermediaries, Gather VM memory from intermediaries!

Intermediaries could be hosts at the destination rack, memory appliances, middleboxes, etc. !

Scatter-Gather = Post-copy variant  + live checkpoint/restore via intermediate nodes!

Concurrent Scatter (checkpoint) and Gather (restore) phases!

Post-copy variant!

Pre-paging via intermediaries!

Page-faults serviced from source/intermediaries.
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Fig. 1. Total migration time of a single idle VM. The destination host is
either idle or runs two busy VMs running Tunkrank (indicated in braces).
The memory pressure at the destination is controlled by varying the available
DRAM from 12GB (high memory pressure) to 16GB (low memory pressure).
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Fig. 2. In traditional pre-copy and post-copy migration, the VM’s pages are
transferred through a direct TCP connection between the Migration Managers
at the source and destination machines.

memory size from the source to the destination. The source
host only performs migration of an idle VM and nothing
else, whereas the destination host faces varying degrees of
resource pressure. The destination host runs two VMs of 5GB
memory size, each of which runs the Tunkrank graph analytics
benchmark from the CloudSuite [12] package. Tunkrank is a
memory and CPU-intensive benchmark which determines a
Twitter user’s influence based on the followers. Tunkrank uses
a 1.3GB Twitter database as input, which generates a runtime
memory pressure of around 4GB per VM.

We increase the available DRAM at the destination from
12GB to 16GB in 1GB increments (using boot-time options),
thus decreasing the memory pressure. Figure 1 shows the
eviction time measured when using both pre-copy and post-
copy. With idle destination (16GB DRAM), both pre-copy and
post-copy yield low eviction times. However the eviction time
for both the migration techniques increases by around 600%
(from 52 seconds to 328 seconds) as the memory pressure
increases at the destination (as DRAM is reduced from 16GB
to 12GB). During the VM’s migration, its memory pages are
transferred to the destination. When the destination doesn’t
have enough free memory for the incoming VM, the host OS
responds by swapping out the pages of the busy VMs running
Tunkrank. The time spent in reclaiming the memory pages
to create free space for the incoming VM at the destination
increases the eviction time at the source. Note that if, instead
of being idle, the migrating VM was running a write-intensive
workload, then the eviction time of pre-copy would be worse.

IV. ARCHITECTURE OF SCATTER-GATHER MIGRATION

In traditional live VM migration, as shown in Figure 2, the
source would directly transfer the VM’s state to the destination
through a TCP connection, which carries both data (VM’s
memory and CPU state) and control information (handshakes,
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Fig. 3. Scatter-Gather migration: VM’s pages are transferred through
intermediate hosts using VMD. A direct TCP connection between the source
and destination carries control and demand-paging information.

synchronization, etc.) This direct TCP connection would last
until the destination receives the entire VM.

In the Scatter-Gather approach, as shown in Figure 3,
the source and destination exchange bulk of VM’s memory
through intermediate hosts I1 ... IN . Only the VM’s CPU
execution state, any demand-paged memory, and control in-
formation, are exchanged through a direct TCP connection
between the source and destination. This connection lasts only
until the source evicts the entire VM. The source and desti-
nation run Migration Managers for each VM being migrated.
In KVM/QEMU platform, the Migration Manager is part of
QEMU – a multi-threaded user-level process, one for each
VM, that mediates between the VM and the hypervisor besides
carrying out VM migration.

A Virtualized Memory Device (VMD) layer, aggregates
the free memory of all intermediate hosts and presents the
collection as block device to the Migration Managers at the
source and the destination. While the VMD layer is strictly
optional for Scatter-Gather migration, it simplifies the overall
system design, as we will describe in Section V-A.

A. Scatter Phase
The goal of the scatter phase is to quickly evict the VM’s

memory and execution state from the source host. This phase
is executed at the source host. First, a control TCP connection
is established between the source and the destination. Next,
the VM’s CPU state is transferred to the destination where
the VM is resumed immediately. Since the VM’s memory still
resides at the source host, the VM would start generating page-
faults as it accesses its memory. The destination’s Migration
Manager sends all requests for the faulted pages to the source’s
Migration Manager over the control TCP connection, which
then responds with the faulted page. This step is similar to the
demand-paging component of traditional post-copy migration.
Simply relying on demand-paging would be terribly slow.

To speed up the eviction of VM’s memory, the Migration
Manager at the source also actively transfers the VM’s pages
out of the source host to intermediate hosts. The Migration
Manager opens the block device exported by the VMD as a
file and sequentially writes the VM’s memory pages to this
file. However, the VMD simply represents an aggregation of
the memory of intermediate hosts. Thus the VMD layer at the
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Fig. 4. Message exchange and data transfer between Migration Managers
and VMD during Scatter-Gather migration.

of their location. Upon receiving a read request, the VMD
server retrieves the corresponding page from the memory and
forwards it to the requesting VMD client. The client VMD
module communicates with several intermediate servers and
forwards the read or write request to the appropriate interme-
diate server. The placement of VM’s pages at the intermediate
hosts is determined by the VMD using a distributed hashing
algorithm. To describe with some simplification, the page-
offset is hashed into a space of 264 hash values. The hash value
space is partitioned equally among all intermediate nodes,
which store the pages whose offsets map into their part of the
hash space. Thus a VMD client does not need to individually
track each page; it can determine the location of a page simply
by calculating the hash value of the page-offset.

Figure 4 shows the message transfer between the VMD
client and servers. VMD uses a custom-designed layer-2
protocol called RMAP, that is described in full in [10]. RMAP
is a reliable message oriented protocol. It includes the features
such as flow control and fragmentation-reassembly. The client
module exports a block device through which reads and writes
can be issued to the VMD layer by the Migration Managers.
Thus Migration Managers are relieved from managing indi-
vidual connections with intermediate host.

B. Migration Manager
The Migration Manager is part of the KVM/QEMU process,

which accesses the VM memory to perform the migration. As
described in Section IV, the source scatters the VM’s pages to
the VMD via a block device interface and also communicates
control information about individual pages to the destination
via a control TCP connection. The control information for
each page contains the pseudo-physical address of the page in
VM’s memory and the page’s location (block offset) in the
VMD. Demand-paging requests from the destination arrive
at the source over the control TCP connection. The source
prioritizes the transfer of the faulted pages by temporarily
interrupting scatter operation so that the faulted pages do not

face network queuing delays behind the pages being scattered.
We modify the post-copy implementation from the

Yabusame project [15] to implement the gather phase for
Scatter-Gather migration. The destination side Migration Man-
ager consists of a UMEM device (/dev/umem), its driver in
the kernel-space, and a UMEMD process in the user-space.
UMEMD process coordinates with the source-side Migration
Manager to receive the VM state. UMEM device provides
memory sharing between the QEMU process and the UMEMD
process. Therefore, UMEMD can directly access the VM’s
memory to copy the received VM pages. UMEMD also opens
a VMD device in read-only mode to read VM pages. For each
pages written to the VMD, the source side forwards a control
message to the UMEMD, which it stores in an offset list. This
information is later used to read faulted pages from the VMD.

When a running VM accesses a page that has not been
received from the source it generates a fault. The UMEM
driver in the kernel intercepts the faults and notifies the
UMEMD user-space process. A dedicated user-space thread,
created by the UMEMD process handles the page faults. Upon
receiving a fault from the UMEMD driver, the thread checks
the state of the Scatter-Gather migration. If the scatter phase is
in progress, the fault is redirected towards the source over the
control connection. Otherwise the VMD offset of the faulted
page is read from the offset list created earlier, the page is
read from the VMD, and copied into the memory region shared
with the QEMU process. Once the faulted page is in place, the
UMEMD process notifies the VM through the UMEM device.
UMEMD also creates a thread to actively gather the pages
from the VMD. This thread traverses the offset list received
from the source, sequentially reads the pages from the VMD
and copies them into the VM’s memory, unless they have been
already serviced via a page-fault.

C. Rate Limiting of Gather Phase
Scatter-Gather provides the option to limit the rate at which

the gather phase reads pages from the VMD. In the Sec-
tion VI-B we demonstrate that rate-limiting the gather phase
can reduce the performance impact of migration on co-located
network-bound VMs at the destination while delivering low
VM eviction time at the source. To implement rate-limiting,
we allow users to input the rate at which VM pages can be read
from the VMD. The destination Migration Manager divides
the actively read pages into batches. It keeps track of the rate
of the active reads for each batch of pages and instructs the
thread reading the pages from the VMD sleep for the duration
needed to maintain the desired rate of reception.

VI. EVALUATION

We now experimentally demonstrate that, compared to stan-
dard pre-copy and post-copy, Scatter-Gather live migration can
reduce the VM eviction time at the source even when the
destination is resource constrained. The experimental setup
is the same as in Section III except that, for Scatter-Gather
migration, we now use one intermediate node to stage the
VM’s memory. All nodes are connected to the same switch.

Source!

Scatters pages to VMD; !

Sends IDs of scattered pages to destination!

Services faults from destination !

Prioritizes fault servicing over scatter!

Destination!

Gathers pages from VMD!

Requests faulted pages !

from source while source is scattering, from 
VMD afterwards!

Virtualized Memory Device (VMD) Layer!

Peer-to-peer memory sharing system over Ethernet!

Presents the aggregated free memory of 
intermediaries as a block device to Migration 
Managers 8



Preliminary Results	
Goal: !

When destination is resource constrained, Scatter-Gather Migration 
can deliver lower eviction time than pre-copy or post-copy!

Setup!

Dual quad-core servers with 1.7 GHz CPUs and 16GB DRAM!

1Gbps links to a Nortel 4526-GTX switch!

Host runs Linux 2.6.32 KVM/QEMU 1.6.50; VMs run Linux 3.2.!

Standard pre-copy implementation in QEMU!

Post-copy implementation from Yabusame project.!

Modified for Scatter-Gather



Eviction Time: 
Idle VM to Busy Destination

Scatter-Gather delivers constant eviction time with increasing memory 
pressure!

TMT higher by about 10% !

since VMD transmission protocol delivers lower throughput (750 Mbps) 
than TCP in our current implementation

10
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Fig. 5. Comparison of Eviction Time (ET) and Total Migration Time (TMT)
for a single 5GB idle VM to a busy destination host. The destination already
hosts two 5GB VMs running Tunkrank.

The reason we use only one intermediate node in our exper-
iments is to show that Scatter-Gather can reduce eviction time
even with just one intermediate node. Our current prototype
can also run with multiple intermediate hosts. Our results,
which we omit here due to space constraints, indicate that
the eviction time and total migration time are independent of
the number of intermediate hosts. This holds as long as the
intermediate hosts are not bandwidth constrained and the sum
of their free memory is greater than the migrating VM’s size.

A. Eviction Time with Memory Bottleneck
Recall that in Section III, we showed that memory pressure

at a destination adversely affected the VM eviction time
using traditional pre-copy and post-copy approaches. Here we
show that Scatter-Gather migration can deliver consistently
low eviction time even when the memory pressure at the
destination increases. As in Figure 1, the memory pressure at
the destination is controlled by changing the destination host’s
memory size from 12GB to 16GB in 1GB steps, indicating
progressively less memory pressure. We migrate an idle 5GB
VM to a destination hosting two 5GB VMs running Tunkrank
and measure the eviction time. Figure 5 shows that the eviction
time for Scatter-Gather is around 6 times shorter than for pre-
copy and post-copy. Furthermore, it remains fairly constant
(at around 49 seconds) irrespective of the memory pressure
at the destination. In contrast, eviction time for pre-copy and
post-copy steadily increases with memory pressure.

At the same time, Figure 5 shows that the total migration
time of Scatter-Gather is only slightly higher (by up to 10%)
than pre-copy and post-copy. This modest overhead is due to
two reasons. First, the memory pages are transferred over two
hops to the destination, as opposed to just one for pre-copy
and post-copy. Secondly, our implementation of layer-2 RMAP
protocol in VMD presently delivers around 750 to 800Mbps
throughput on a 1Gbps Ethernet when the intermediate nodes
simultaneously handle reads and writes, whereas direct TCP
connection between source and destination can achieve close
to 900Mbps throughput. The second factor is merely an
implementation artifact and we plan to resolve it soon. Note
that, even with a lower transmission throughput, Scatter-Gather
can still deliver a low VM eviction time; higher throughput
will only help reduce it further.
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Fig. 6. Memcached request latency. The destination runs memcached servers
in two 5GB VMs while an idle 5GB VM is migrated from the source.

B. Bandwidth Pressure at the Destination
We have already shown that, under memory pressure at

the destination, Scatter-Gather migration can improve the VM
eviction time compared to standard migration approaches. We
now consider the impact of bandwidth pressure at the destina-
tion. Our focus here is not just VM eviction time by itself, but
the tradeoff between the VM eviction time and the performance
of network-bound VMs running at the destination. It is well
known [5] that during live VM migration, performance of other
network-bound applications at the source and destination can
suffer because of bandwidth contention with VM migration
traffic. Here we consider the performance of co-located appli-
cations at the destination, since we assume that the source can
dedicate its entire transmission bandwidth to VM migration to
minimize eviction time. To avoid performance impact on other
network-bound applications, a commonly prescribed solution
is to rate-limit (i.e. limit the bandwidth used by ) the VM
migration. While this does improve the network bandwidth
available to co-located applications, it also has the unfortunate
side-effect of prolonging the VM eviction time. Here we show
that, when using Scatter-Gather, this trade-off between eviction
time at the source and the application performance at the
destination is not necessary, i.e. we can lower VM eviction
time and simultaneously rate-limit the gather phase to maintain
application performance at the destination.

To show this experimentally, we run two VMs at the desti-
nation, each running a memcached server. Each VM caches a
3GB Twitter dataset in its memory and responds to query and
update requests from an external client. We simultaneously
migrate a 5GB idle VM from the source to the destination.
The quality of service (QoS) guarantee for the memcached
benchmark dictates that 95% of the requests must be executed
within 10ms. During migration, the incoming migration traffic
competes with the memcached request-response traffic for the
link bandwidth. Figure 6 shows that, without any rate limiting
for the migration, all of the memcached requests sent during
the migration take more than 10ms to complete. When we rate-
limit the migration at 256Mbps, memcached performance im-
proves with the QoS specifications for all migration schemes.
However, Table I shows that rate limiting the VM migration
increases the VM eviction time by almost 1.5 times or more
for pre-copy and post-copy. In contrast, when we rate-limit
the Gather phase of Scatter-Gather migration, then the eviction
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Fig. 5. Comparison of Eviction Time (ET) and Total Migration Time (TMT)
for a single 5GB idle VM to a busy destination host. The destination already
hosts two 5GB VMs running Tunkrank.

The reason we use only one intermediate node in our exper-
iments is to show that Scatter-Gather can reduce eviction time
even with just one intermediate node. Our current prototype
can also run with multiple intermediate hosts. Our results,
which we omit here due to space constraints, indicate that
the eviction time and total migration time are independent of
the number of intermediate hosts. This holds as long as the
intermediate hosts are not bandwidth constrained and the sum
of their free memory is greater than the migrating VM’s size.

A. Eviction Time with Memory Bottleneck
Recall that in Section III, we showed that memory pressure

at a destination adversely affected the VM eviction time
using traditional pre-copy and post-copy approaches. Here we
show that Scatter-Gather migration can deliver consistently
low eviction time even when the memory pressure at the
destination increases. As in Figure 1, the memory pressure at
the destination is controlled by changing the destination host’s
memory size from 12GB to 16GB in 1GB steps, indicating
progressively less memory pressure. We migrate an idle 5GB
VM to a destination hosting two 5GB VMs running Tunkrank
and measure the eviction time. Figure 5 shows that the eviction
time for Scatter-Gather is around 6 times shorter than for pre-
copy and post-copy. Furthermore, it remains fairly constant
(at around 49 seconds) irrespective of the memory pressure
at the destination. In contrast, eviction time for pre-copy and
post-copy steadily increases with memory pressure.

At the same time, Figure 5 shows that the total migration
time of Scatter-Gather is only slightly higher (by up to 10%)
than pre-copy and post-copy. This modest overhead is due to
two reasons. First, the memory pages are transferred over two
hops to the destination, as opposed to just one for pre-copy
and post-copy. Secondly, our implementation of layer-2 RMAP
protocol in VMD presently delivers around 750 to 800Mbps
throughput on a 1Gbps Ethernet when the intermediate nodes
simultaneously handle reads and writes, whereas direct TCP
connection between source and destination can achieve close
to 900Mbps throughput. The second factor is merely an
implementation artifact and we plan to resolve it soon. Note
that, even with a lower transmission throughput, Scatter-Gather
can still deliver a low VM eviction time; higher throughput
will only help reduce it further.
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Fig. 6. Memcached request latency. The destination runs memcached servers
in two 5GB VMs while an idle 5GB VM is migrated from the source.

B. Bandwidth Pressure at the Destination
We have already shown that, under memory pressure at

the destination, Scatter-Gather migration can improve the VM
eviction time compared to standard migration approaches. We
now consider the impact of bandwidth pressure at the destina-
tion. Our focus here is not just VM eviction time by itself, but
the tradeoff between the VM eviction time and the performance
of network-bound VMs running at the destination. It is well
known [5] that during live VM migration, performance of other
network-bound applications at the source and destination can
suffer because of bandwidth contention with VM migration
traffic. Here we consider the performance of co-located appli-
cations at the destination, since we assume that the source can
dedicate its entire transmission bandwidth to VM migration to
minimize eviction time. To avoid performance impact on other
network-bound applications, a commonly prescribed solution
is to rate-limit (i.e. limit the bandwidth used by ) the VM
migration. While this does improve the network bandwidth
available to co-located applications, it also has the unfortunate
side-effect of prolonging the VM eviction time. Here we show
that, when using Scatter-Gather, this trade-off between eviction
time at the source and the application performance at the
destination is not necessary, i.e. we can lower VM eviction
time and simultaneously rate-limit the gather phase to maintain
application performance at the destination.

To show this experimentally, we run two VMs at the desti-
nation, each running a memcached server. Each VM caches a
3GB Twitter dataset in its memory and responds to query and
update requests from an external client. We simultaneously
migrate a 5GB idle VM from the source to the destination.
The quality of service (QoS) guarantee for the memcached
benchmark dictates that 95% of the requests must be executed
within 10ms. During migration, the incoming migration traffic
competes with the memcached request-response traffic for the
link bandwidth. Figure 6 shows that, without any rate limiting
for the migration, all of the memcached requests sent during
the migration take more than 10ms to complete. When we rate-
limit the migration at 256Mbps, memcached performance im-
proves with the QoS specifications for all migration schemes.
However, Table I shows that rate limiting the VM migration
increases the VM eviction time by almost 1.5 times or more
for pre-copy and post-copy. In contrast, when we rate-limit
the Gather phase of Scatter-Gather migration, then the eviction
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migrating a 5GB VM!
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external client 

Eviction Time (Seconds)
Pre-copy Post-copy Scatter-Gather

Rate Limit (256 Mbps) 160.8 164.3 49.8
No Rate Limit 98.6 106.3 49.5

TABLE I
EVICTION TIME COMPARISON WHEN THE MIGRATING 5GB IDLE VM

WITH AND WITHOUT RATE LIMITING.

time does not increase significantly. The source host can be
deprovisioned quickly once the VM is evicted, even as the
destination is reading pages from the VMD within the rate
limit. While this experiment considers bandwidth constraints
at the destination, it is also possible for the source to be
bandwidth constrained, in which case the eviction time is
lower-bounded by the bandwidth that the source can dedicate
to evicting the VM. Scatter-Gather is primarily useful when
the destination is more resource constrained and slower than
the source.

C. Network Overhead
In our current implementation, lower eviction time of

Scatter-Gather comes with a tradeoff, namely a higher network
overhead. In this section we quantify this overhead and its
implications. Table II shows the amount of VM migration
traffic when an idle or a busy 5GB VM is migrated. All busy
VMs run Tunkrank while the migration is in progress. Note
that since post-copy transfers each page only once over the
network it has lowest network overhead with an idle or a
busy VM among the three VM migration techniques. With
pre-copy, the network overhead for a busy VM increases
three fold as compared to its network overhead with an
idle VM. Since Tunkrank is a write intensive application it
continuously dirties VM pages during its migration. Since pre-
copy retransmits such pages, its network overhead increases.
For Scatter-Gather migration each page of the migrating VM
traverses the network twice: once during scatter and again
during either gather or demand-paging. Thus, for migrating
an idle VM, Scatter-Gather has the highest network overhead.
However, for migrating a busy VM, pre-copy has the highest
network overhead since multiple rounds of pre-copy iterations
are needed to transfer constantly dirtied pages.

For this paper, we did not use any content-based optimiza-
tions in Scatter-Gather, such as compression or deduplication.
Prior work [9], [11], [22], [18] has shown that deduplication
can significantly reduce the network overhead of VM migra-
tion. We are presently implementing a distributed deduplica-
tion mechanism in the VMD layer that would transmit only
one copy of the identical pages to the intermediate nodes and
the destination. We expect this optimization to significantly
reduce the network overhead of our current implementation,
especially when simultaneously migrating multiple VMs. We
also expect Scatter-Gather VM migration to benefit the most
from redundancy elimination by network optimizers because
the same (unmodified) pages are transferred twice and can be
easily cached by middleboxes in the network.

D. Downtime
Table III shows the downtime comparison of the three VM

migration techniques for the migration of a 5GB idle or busy

Network Overhead (GB)
Pre-copy Post-copy Scatter-Gather

Idle VM 5.01 5.00 10.03
Busy VM 15.48 5.00 10.24

TABLE II
AMOUNT OF DATA TRANSFERRED FOR THE MIGRATION OF A SINGLE 5GB

IDLE OR A BUSY VM. BUSY VM RUNS TUNKRANK.

Downtime (milliseconds)
Pre-copy Post-copy Scatter-Gather

Idle VM 9.5 1 1
Busy VM 14 1 1

TABLE III
DOWNTIME COMPARISON WHEN THE MIGRATING 5GB VM THAT’S

EITHER IDLE OR BUSY. BUSY VM RUNS TUNKRANK.

VM running Tunkrank. For the migration of an idle VM, the
downtime of all the three techniques remains low. In addition
to the VM’s CPU state, pre-copy also transfers VM’s writable
working set during the downtime. Therefore it has higher
downtime than post-copy and Scatter-Gather VM migration.
With a busy VM, due to higher page dirtying rate of the VM,
size of the VM’s writable working set increases, thus pre-copy
yields a higher downtime than with an idle VM.

VII. RELATED WORK
To our best knowledge, Scatter-Gather live migration is the

first approach that aims to reduce VM eviction time when
the destination is resource constrained. While numerous live
VM migration approaches exist in literature, here we review
the most related research on lowering total migration time,
checkpoint/restart, and applications of post-copy.

Lowering Total Migration Time: In traditional pre-
copy [4], [21] and post-copy [13], [15] approaches, the source
and destination hosts are coupled during the entire migration.
Therefore their total migration time equals eviction time. Pre-
copy achieves low downtime for read-intensive applications,
but for write-intensive applications, its total migration time
and network traffic can increase significantly. Post-copy lowers
total migration time and network traffic overhead for write-
intensive applications, with the trade off of a temporary perfor-
mance degradation of the VM’s performance while its working
set is being migrated. Optimizations such as ballooning [27],
[13], dropping the guest cache [17], deduplication [11], [9],
[8], [18], [22], [29], compression [16], [11], and dynamic VM
synthesis [23], can lower the amount of migration traffic and
consequently the total migration time. These optimizations are
orthogonal to our contributions. We are presently implement-
ing cluster-wide deduplication [9] and compression in VMD.

Relationship to Checkpoint/Restore: All virtualization
platforms [26], [1], [19] include a checkpoint/restore func-
tionality in which one can take a snapshot of a VM’s mem-
ory and execution state and restore the VM later from the
snapshot. If eviction time were the only metric of interest,
then checkpoint/restore via the memory of intermediate nodes
would yield the lowest eviction time. However, traditionally
restoration can be performed only after the checkpoint opera-
tion is complete, resulting in a large downtime. Scatter-Gather
live migration approach can be viewed as a combination of live
post-copy migration and checkpoint/restore via intermediate



Conclusions

Scatter-Gather Live VM migration!

Reduces eviction time without affecting total migration time!

Network overhead can be tackled using compression/
deduplication!

Bigger impact when migrating multiple VMs together!

Leads to the idea of permanently “scattered” VMs!

Removes memory as a bottleneck for consolidation!

Provides greater agility in scaling out when demand increases.
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