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Abstract

Placement of computation inside the network is a pow-
erful computation model that can improve the overall per-
formance of network applications. In this paper, we address
the problem of providing sound and efficient system support
for placing computation in a network router. We identify a
set of requirements, related to protection, resource control,
scheduling and efficiency, that are relevant to the design of
this system support. We have developed a system that at-
tempts to meet these requirements, and have used it to write
a router application that performs aggregated congestion
control.

1 Introduction

The tremendous success of data networks can largely
be attributed to the simplicity and robustness of the net-
work’s service model. By placing all complexity in the
end-systems and providing a simple, stateless forwarding
service, the network can provide a communication substrate
that is resilient to link and node failures. Good end-to-end
algorithms, like TCP for congestion control, have further
contributed to the adequacy of this model, by being able
to control network stability using purely end-to-end mecha-
nisms.

However, there is quantitative evidence to show that the
ability to place computation inside the network leads to a
fundamentally more powerful computation model. To begin
with, such a capability allows one to control how the net-
work processes and routes packets of certain applications,
affording various optimizations not possible with a static
forwarding service [1]. Computation placed in the network
also has the ability to exploit topological advantage, for ex-
ample, recovery latency for reliable multicast improves by
performing local recovery in routers [2]. Similarly, the per-
formance of heterogenous receivers receiving media flows
improves by using a transcoding video gateway [3]. Fur-
ther, access to multiple flows belonging to an application
(or global context), typically affords some global informa-
tion that is useful to the overall performance of that appli-

cation. For example, knowledge of congestion state probed
by independent flows is useful for new TCP flows, lead-
ing to better overall TCP performance [4], whereas global
knowledge of session ID to cluster node mappings in an
SSL server cluster leads to improved connection through-
put [5]. In many cases, the ability to place computation
even in a restricted set of network nodes (e.g. edge routers)
can provide a large subset of the benefits of this paradigm.

However, the success of this paradigm in real networks
critically depends upon the existence of carefully designed
system support for programmability in routers. The service
provided by the network relies on the functionality pro-
vided by its routers. Without appropriate resource control
and protection mechanisms, dynamically added computa-
tion can effect the performance and integrity of the sys-
tem in undesirable ways. Moreover, a router is a massively
shared system, and its resources are used by a large number
of flows. This makes effective arbitration of the router’s
resources between these flows an important requirement.
Besides correct design, efficiency is a key requirement for
making it practical for performance sensitive applications
to use router extensions. Our goal in this paper is to dis-
cuss some of the requirements for sound and efficient sys-
tem support for router programmability.

In the rest of the paper, we shall use the term ”router
OS” in place of ”system support for programmable routers”
and the term ”router application” in place of ”computation
placed in programmable routers”1. In the following sec-
tions, we describe the main requirements that we believe
should be taken into account while designing a router OS.

2 Efficient Memory Protection

Memory protection is a basic requirement for maintain-
ing system integrity in the presence of dynamically installed
functions. A dynamically added function may not necessar-
ily be malicious, but it may perform unintended operations
that compromise the safety of the system. Since the exe-
cution of a function, in general, may be dependent upon the

1Note that the terminology is not entirely accurate since these entities
could take the form of a language runtime and a program in the language.



environment it executes in, it may not be possible to exhaus-
tively test it for safe operation. Thus in general, a ”trusted
function” may not be safe unless there are restrictions on
what kind of computation the function may perform.

It is possible to write functions in a restricted program-
ming language that guarantees safe execution. For certain
kind of functions it may even be possible to statically de-
termine safety, even though they are written in an unre-
stricted programming language. However, our interest is
in an approach which does not restrict the expressiveness
of the language in which these functions are written. Our
experiences in writing two router applications that involved
TCP congestion control and splice mechanisms [5] [4] show
that router application code can be of significant complex-
ity. We feel that writing these applications in a restricted
language would have been substantially more complex. The
generality of possible router extensions makes it difficultto
come up with a language that captures all intended forms of
computation, while guaranteeing safety. The key goal then
becomes to provide safety efficiently when router applica-
tions are unrestricted.

Efficient memory protection can be provided by utilizing
the low-level hardware protection features of the processor
architecture in question. Most general-purpose processors
provide hardware primitives for protection, where all asso-
ciated checks are embedded in the micro-architecture and
thus do not incur any extra overhead. These primitives,
when exploited at the lowest level, can provide efficiency
as well as hard protection guarantees. We have been able
to implement efficient protection domains in a router OS
by utilizing the segmentation hardware of the X86 archi-
tecture [6]. The protection subsystem of our router OS ex-
poses the segmentation hardware at a low enough level that
router applications can use it easily, while keeping invoca-
tion overheads close to that of a protected function call in
hardware. Similar approaches have been tried with other ar-
chitectures as well [7]. In general, by tuning its protection
subsystem implementation to the processor architecture, a
router OS implementation can provide efficient as well as
strong memory protection without compromising expres-
siveness of router application code. In spirit, this design
principle is similar to that of Exokernels [8], which would
argue for exposing hardware protection features to the ap-
plication.

3 Performance Protection

We distinguish between flows that are bound to some
router application, calledapplication flows, and flows that
are processed by the router’s standard forwarding code,
calledgeneric flows. We call generic flow processing and
control plane processing as the router’score tasks. The
goal of performance protection is to protect the performance

seen by the router’s core tasks in the presence of applica-
tion flows. Performance protection limits the scope of the
impact that dynamically added computation has on flows
going through the router : application flows perceive the
end-to-end effects of placing computation in the router (as
desired), while the presence of this computation is transpar-
ent to generic flows.

Performance protection has two implications on a router
OS. Firstly, core router tasks must be bound to an appro-
priatecore scheduling context. This makes core task pro-
cessing explicit in the scheduler, allowing it to deliver the
appropriate performance guarantee. Secondly, the protec-
tion policy for the core tasks must be chosen, which may be
prioritization or sharing. Recent studies using WAN traffic
traces and inter-domain routing message traces show that
traffic patterns and control plane processing load in inter-
net routers is bursty and largely unpredictable. Thus, core
router tasks are characterized by high short-term process-
ing bandwidth, even if the long term processing bandwidth
requirement may be small. Thus, to provide true isolation
to these tasks, prioritization is the appropriate scheduling
primitive. Prioritization ensures that in a programmable
router, the processing demands of core tasks will be han-
dled with zero latency in the presence of router applica-
tions2. For generic flows and control processing, this es-
sentially simulates a router in which there were no appli-
cations running. Moreover, if application flows are sched-
uled among themselves using a proportional share sched-
uler, they will adapt gracefully to short-term reduction in
available resource bandwidth (system virtual time will not
advance while the prioritized task is being run).

4 Event-Driven Control Flow

An important characteristic of many useful router appli-
cations is the use of functions that carry state across invoca-
tions. Protocol stacks are one example, where every ”layer”
is a stateful function. Similarly, any router application that
exploits global state across flows must use stateful func-
tions. Typically, a single stateful function would be used
by many flows. Similarly, a single flow would use several
stateful functions that act like a ”processing pipeline” for
the flow. This model localizes state in the functions, and
carries a flow’s invocations from function to function. This
is in contrast with the ”thread” model, where it is expected
that a thread executing on behalf of the flow has access
to all the state. If different functions are in different pro-
tection domains (because some functions are privileged, or
installed by mutually untrusted authorities), the thread ap-
proach must either resort to state sharing through an inter-
face (since it cannot directly read/write it), or there should

2This of course depends upon the scheduler getting control, which may
happen on a function return or a timer. See section 4.
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be a mechanism for a thread to ”cross” protection domains.
The latter essentially takes the form of an explicit invoca-
tion, as proposed in [9] through descriptor passing.

Thus, we argue that the computation and composition
model for router applications should be event-based, as op-
posed to thread-based. Besides providing a closer match
to a computation model that uses stateful shared functions,
a key advantage of an event-based model is that all invoca-
tions areexplicitandasynchronous. Since invocations carry
the identity of the resource principal making the invocation,
the resource principal associated with a piece of work is al-
ways explicitly known throughout the system. This gives
the scheduler complete knowledge of pending work in the
system for each resource principal, and allows it to sched-
ule work correctly. Further, by being asynchronous, every
invocation provides an instant when the scheduler gets con-
trol, leading to tighter resource control than that allowedin
a constant time-slice based scheduler. Note that at every
scheduling instant, the scheduler can look for invocations
made in the core scheduling context (section 3), and priori-
tize them.

5 Integrated Resource Scheduling

An application flow requires CPU cycles as well as link
bandwidth from the router to meet its performance require-
ment. However, the router application can only specify a
flow’s requirement in terms of the amount of work required
from each resource, and a single, global deadline (or rate)
requirement. For example, for each packet of a flow, it may
specify the CPU cycles required, the packet size in bytes,
and a single deadline for the packet to get serviced. The
application does not specify how deadlines should be allo-
cated in the CPU and the link. This task is best done by
the router OS that should figure out how to best deliver the
overall deadline by allocating a per-resource deadline. We
call this router OS functionintegrated resource scheduling.

We generalize integrated resource scheduling in terms of
deadlines, since rate requirements can be mapped to dead-
lines. Thus, we assume that a flow asks for a deadline (

�
)

for each of its packets, and specifies the amount of work re-
quired from the CPU (� � ) and the link (� � ). The goal of
integrated resource scheduling is to split

�
into

� � , a dead-
line for the CPU, and

� � , a deadline for the link, according
to an optimization criterion. We briefly describe a dead-
line allocation algorithm here. At any time, there are a set
of requests admitted into the system, corresponding to a set
of reservations in each resource. If a resource has capac-
ity � and has admitted a set of requests where request�
needs work� � and has been allocated a deadline

� � , then
the residual capacity of the resource is� � � 	 
 � � � � � � .
When a new request comes for this resource, asking for an
amount of work� , its minimal service time in this resource

is
� � �  � � � � . If the sum of the quantity

� � �  for every
resource is less than or equal to the global deadline of the
task, then the request is admissible. However, if the sum is
less than the global deadline, these deadlines can berelaxed
such that each resource has some spare capacity left (Note
that allocating a deadline of

� � �  in a resource corresponds
to using upall the residual capacity of that resource). It is in
this relaxation step that the system-wide optimization crite-
rion comes in. For instance, if the optimization goal is to
keep all resources equally utilized, so that the system keeps
spare capacity uniformly available across all resources, then
the deadline allocated in the heavily utilized resource would
be relaxed more. In general, the relaxation algorithm triesto
iteratively select a constant� such that the residual capacity
of resource� is � � � , where� � encapsulates the optimization
criterion. If uniform spare capacity is desired,� � would be�

for all � , otherwise it would reflect the ratio in which the
resources are to be kept utilized. Such a mechanism should
be an integral part of a router OS in order to achieve tight
admission control for application flows.

6 Binding Resources to Flows

Typically router resources would be shared by a large
number of application flows, which calls for appropriate
resource arbitration. Moreover, many router applications
would typically operate upon aset of flows belonging to
a type of network application, as opposed to operating on
single flows. In such cases, the router application would
typically have an aggregate, as opposed to per-flow, per-
formance requirement. This makes the task of accurately
binding router resources to flows an important one. The
expressivenessof the resource reservation interface deter-
mines how accurately router applications will be able to
express their resource requirements. An inflexible inter-
face may lead to coarse specifications, leading to under-
utilization of router resources. Likewise, an overly flexible
interface may blow up the scheduling state in the system,
while being a burden to a router application writer.

We believe that two key principles suffice to provide a
simple and flexible interface.

1. Decouple execution contexts from scheduling con-
texts: This means that the interface should clearly dis-
tinguish between a thread of control associated with
a flow, and the resource principal associated with it.
Thus, an invocation made in the context of a flow
should have two components : the identity of the flow,
and the identity of the resource principal, which may
be different in general.

2. Allow absolute as well assymbolicspecification of re-
source reservations : A symbolic specification means
a reference to another principal’s resource reservation.
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Thus, a flow� � may specify that it requires an over-
all rate of

� � �
packets/sec with each packet having� �

bytes (independent link reservation of� � � �
bytes/sec),

but shares the CPU with flow� � (symbolic CPU reser-
vation).

These principles have two important implications. First,
binding a flow to a resource principal now becomes an ex-
plicit operation. Second, resources can be shared on a per-
resource basis, as opposed to an all-or-none basis (where
either both CPU and link resources are shared, or none is
shared). An example application where this is needed is
a multicast application that transcodes incoming data on a
link and distributes it over three output links. Each output
flow requires its own context in its output link, and may
even have distinct link rate requirements due to receiver
heterogeneity. However, the transcoding operation is done
once on a single copy of every packet, and hence the CPU
reservation should be shared. This application can be im-
plemented using three flows that share their CPU resource.
One of the flows can make the absolute CPU reservation,
and the other two can refer to this reservation symbolically.
A cursory look at the example says that the same could be
done by declaring one incoming flow that only reserves the
CPU, and three outgoing flows reserving only the respec-
tive link rates. However, this would break the integrated
CPU and link scheduling requirement described in section
5.

7 Srishti and Aggregate TCP

The ideas presented above have been incorporated inSr-
ishti, a substrate for writing applications in a router that uses
the X86 architecture for application flow processing. Us-
ing the above design principles, Srishti allows composition
of router applications through stateful functions and flows.
The functions are untrusted, preemptible functions that can
be efficiently co-located with core router functions in a sin-
gle address space. Flows are execution contexts, bound ex-
plicitly to resource principals using Srishti’s API. All con-
trol transfer is explicit and asynchronous, and functions are
called through references. These references are obtained by
a namingservice that acts like a dynamic symbol table of
loaded functions.

We briefly share our experience in writing a router appli-
cation over Srishti to perform aggregated TCP congestion
control. TCP does not provide mechanisms to allow a new
connection to reuse congestion estimates gathered by other
connections that have used the same path. This forces a new
TCP connection to always start from a conservative estimate
of available bandwidth, causing short connections to never
reach the correct value of the available bandwidth. Short
HTTP connections can perform at significantly sub-optimal

performance levels due to this, if there is a lot of opportu-
nity for temporal and spatial congestion state reuse. ATCP
is a router mechanism that allows congestion state reuse be-
tween TCP connections that are expected to share bottle-
neck links in the network3, without changing end-system
TCP implementations. The details on how ATCP imple-
ments its functionality and its evaluation on a real-world
HTTP trace are available in [4].

While composing ATCP using Srishti’s API, the most in-
teresting choice is in how resources are to be allocated, and
thescopeof congestion state sharing. The scenario we envi-
sion is that ATCP is deployed in a router that serves a certain
number of busy TCP servers, say from� different organi-
zations. In this case, the scope of congestion state sharing
is all TCP flows originating at these� servers, and the re-
source allocation goal is to be max-min fair to these� orga-
nizations. Thus the ATCP implementation uses� resource
principals, to which incoming TCP packets are bound. One
can choose to implement ATCP as a monolithic function
that holds per-flow state ; or as� modules where there are
� congestion sharing groups, each of which holds per-flow
state only for the flows in that group. We have currently
implemented ATCP as a monolithic function. Only one ex-
ecution context is used, since all session state is centralized
in one function. Since there are no blocking calls in the ap-
plication, there is no need for multiple execution contextsto
hide blocking latency.

8 Evaluation

We have implemented Srishti on a� � �
MHz Pentium and

tested it as a router with Intel eepro100 network interfaces.
While the implementation uses a Linux skeleton, it depends
more directly on the X86 architecture rather than on Linux4.
In this section, we provide some microbenchmarks on the
system that give some insight into the design decisions laid
out earlier.

We begin with some microbenchmarks related to pro-
tection. A null router application function co-located in a
lesser privileged segment of the core router kernel incurs an
overhead of� 	 
 cycles for a call and return. When the func-
tion also makes a protected function call to a core router
function before returning, the overhead becomes� � � cy-
cles. This is more than twice of the single call, due to addi-
tional overheads of saving all general-purpose registers.To
see the advantages of co-location, we ran a ping-pong test
between two null functions in different address spaces, in-
curring on overhead of

� � � �
cycles per call. This overhead

would be higher in general, due to the cost of re-populating

3ATCP approximates this by grouping together flows destined to the
same subnet.

4Code for Srishti and ATCP is available via anonymous FTP from
ftp.sequoia.cs.sunysb.edu/pub/srishti.
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flushed TLB entries with every address space switch.
The next measurement shows the role of event-driven

control flow in providing fine-grained prioritization to the
router’s generic flows. We modified the eepro100 driver to
use polling instead of interrupts, as would be true of a high-
performance implementation on a PC-like platform. Thus,
interrupt context is not used to process generic flows. We
tried three ways in which the scheduler could get control
in order to serve generic flows. In the first case, the sched-
uler only gets control at system timer interrupts (

� �
msec).

This simulates a time-slice based scheduler, and a system
that uses synchronous function invocations. The second
case gives control to the scheduler only when application
functions return, simulating asynchronous control flow, but
with no timers. In the last case, the scheduler gets control
every time a function returns or the timer fires, represent-
ing the finest scheduling granularity. The system contin-
uously runs invocations whose running time is uniformly
distributed from� msec to	 �

msec in increments of� , cen-
tered roughly around

� �
msec. The router is fed with a uni-

form stream of packets with varying inter-packet gap. The
metric that reflects the ”disturbance” introduced in the for-
warding path of generic flows is the standard deviation of
the inter-arrival time at the receiver. As shown in table 1,
the event-driven approach leads to lesser perturbation than
a constant time-slice based scheduler, and the scheduler that
combines events with time slices performs the best.

Sender Inter Timer Function Timer OR
Pkt Gap Interrupt Return Fn. Return

1.0 1.746 1.821 1.573
4.0 4.383 3.783 3.069
7.0 4.312 3.832 3.082
12.0 3.881 3.658 2.844

Table 1. Standard Deviation (in msec) of received
inter-packet gap for three ways in which the scheduler
can get control from router applications.

The final measurement shows the impact of integrated
resource scheduling in providing tighter admission control.
We assume two resources, each with a capacity of

� � � �
units/sec. Flows request these resources by asking for a
rate of

�
packet per

� � �
msec, requesting

�
unit of work

from one resource and
� �

units from the other. Figure 1
shows how resource usage for each resource changes as
flows are added, for the case when deadline slack is allo-
cated in a fixed manner (algorithm

�
), and when it is allo-

cated in a load-dependent manner (algorithm	 ). Algorithm�
allcoates half the global deadline to each resource, lead-

ing to skewed utilizationand stops admission control sooner
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Figure 1. Utilization of two resources v/s admit-
ted flows for fixed allocation (algorithm 1) and load-
dependent allocation (algorithm 2).

than algorithm	 . Algorithm 	 tries to keep resource utiliza-
tion balanced by allocating more slack to the more loaded
resource.

9 Related Work

Recent interest in providing system support for router
programmability has led to the specification of the NodeOS
interface [10] which attempts to lay down implementation-
independent primitives that a programmable router should
provide. NodeOSimplementationsinternally implement
these primitives using substrates like language runtimes or
specialized OSes [11], and expose the NodeOS interface to
router applications. Placing our work in this context, the
requirements we identify pertain to such NodeOS imple-
mentations. In other words, we expose some of the design
decisions which are hidden beneath the NodeOS interface,
but are important in making router programming a practi-
cal paradigm. Some of the requirements that we propose
are generic, in the sense that they can be incorporated in
existing implementations. For example, efficient memory
protection primitives can be utilized to sandbox router plug-
ins [12]. Similarly performance protection requirements for
core router tasks, and integrated resource scheduling can be
incorporated into any framework that supports scheduling.
Stateful computation and event-driven control flow may not
be possible in some systems, notably systems based upon
functional languages. However fine-grained scheduling af-
forded by event-driven control flow can be supported in lan-
guage runtimes by giving control to the language runtime at
(a chosen set of) function calls.
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