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Problem:	Support	for	
3rd-Party	Hypervisor-level	Services Solution:		Compartmentalize	Services	&	Share	Guest	Control

1. Growing	Number	of	Hypervisor-
level	Services: VM	Introspection,	
Intrusion	Detection,	High	Availability,	Live	
Migration,	Live	Patching,	etc.

2. Guests	Cannot	Simultaneously	Use	
Multiple 3rd-party	Services:	E.g.	
Cross-cloud	migration,	Customized	guest	
security,	Attestation,	etc.

• Guest	Transparent:	No	modifications	to	guest.
• Attach/Detach	L1s	to/from	guest	at	runtime:		Partial/full	

control	over	guest	memory,	VCPUs,	and	I/O	devices.
• Event	Subscription:	L1s	subscribe	to	guest	events	via	L0.
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Featurevisors (F)	:	3rd-party	deprivileged “Hypervisors”	providing	guest	services. Hyperplexor :	Base	L0	hypervisor.

Approach:	Transparent	and	Simultaneous	Control	of	Guest	by	Multiple	L1	Hypervisors	
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allocated. Thus all parties – the guest, its L1s, and L0
– will see identically mapped guest pages regardless of
where they are accessed.

Virtual EPT Modifications: L1 may modify the Vir-
tual EPT it maintains for the guest in the course of per-
forming its own memory management. However, since
the Virtual EPT is shadowed by L0, all Virtual EPT mod-
ifications cause traps to L0 for validation. A Virtual EPT
trap handler in L0, shown in Figure 4, checks these mod-
ifications to ensure that the reserved L1 page backing a
given guest page is backed by the same physical page
across all attached L1s. When L0 traps a Virtual EPT
permission modification, it updates the guest page per-
missions in the Shadow EPT and EPTL1s entries to the
new least permissive combination.

3.5 Memory Event Subscription
An L1 attached to a guest may wish to monitor and con-
trol memory-related events of a guest to provide certain
service. For instance, an L1 that provides live check-
pointing or guest mirroring may need to perform dirty
page tracking in which pages written to by the guest
are periodically recorded so they can be incrementally
copied. An L1 performing intrusion detection using in-
trospection might wish to monitor pages from which
guest attempts to execute code.

In Span virtualization, since multiple L1s can be at-
tached to a guest, the L1 controlling the guest VCPUs
may differ from the L1s requiring memory event noti-
fication. Hence L0 provides Memory Event Subscrip-
tion to enable L1s to independently subscribe to guest
memory events. L1 sends L0 a subscription request of
the form [ L1 ID, Guest ID, event type, guest

page range] through the message channel. For exam-
ple, to perform dirty page tracking, a subscription re-
quest from L1 would be [L1 ID, Guest ID, write

event, all guest pages]. Or to monitor and val-
idate kernel code execution the request would be [L1

ID, Guest ID, execute event, kernel pages].
When L0 receives an event, it delivers the event to the

L1 subscribers as the tuple {Guest ID, guest page

number, event type} via the message channel. Upon
receiving a notification, a memory event emulator in L1
handles the event and responds back to L0 with the tu-
ple {allow/disallow, maintain/cancel}. The re-
sponse fields tell L0 whether to allow or disallow guest
memory access to the page and whether to maintain or
discontinue L1’s event subscription on the notified guest
page. For example, upon receiving a write event noti-
fication for dirty page tracking, an L1 will reply to L0
with {allow,cancel}, which means allow the guest
write access to the page and cancel the subscription on
this guest page. The use of dirty page tracking service is
demonstrated in Section 7.1 to implement a Guest Mir-
roring service in L1.
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Figure 5: Para-virtual I/O for Span VMs. L1a controls
the guest I/O device and L1b controls the VCPUs. Kicks
from L1b and interrupts from L1a are forwarded via L0.

L0 concurrently delivers event notifications to all L1
subscribers. Guest memory access is allowed to proceed
only of all L1s allow the event in their response. To in-
tercept a subscribed memory event, L0 updates the guest
page permissions in every Shadow EPT with the corre-
sponding event mask. L0 also applies the event mask
to guest page entries in each attached L1’s EPTL1 to ac-
curately capture accesses to guest memory generated by
an L1 instead of the guest. For instance, to track write
events on a guest page, the permission bits for write ac-
cess in the EPT entries would be turned off. The original
permissions are saved for later restoration when all sub-
scriptions on the page are canceled.

4 I/O Control
In this work, guests use para-virtual devices [54, 2]
which provide better performance than than device em-
ulation [59] and provide greater physical device sharing
among guests than direct device assignment [7, 8, 49].

Traditional I/O Virtualization: In traditional para-
virtual I/O processing for a single-level guest, the guest
OS runs para-virtual frontend drivers, one for each vir-
tual device, such as block and network devices. The
hypervisor runs the corresponding backend driver. The
frontend and the backend communicate via a shared ring
buffer to issue I/O requests and receive responses. The
frontend places an I/O request in the ring buffer and no-
tifies the backend through a kick event. The backend re-
moves the I/O request from the ring buffer, completes the
request, places the I/O response in the ring buffer, and
injects an I/O completion interrupt to the guest. The in-
terrupt handler in the frontend picks up the I/O response
from the ring buffer for processing. For nested guests
para-virtual drivers are used at both levels.

Span I/O Virtualization: Para-virtual I/O process-
ing for Span guests accounts for which attached hyper-
visor controls the guest VCPUs relative to the I/O de-
vice. If the same hypervisor controls both guest VCPUs
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Status,	Results,	and	Future	Work

• Key	Publications:
1. Multi-hypervisor	Virtual	Machines:	Enabling	an	Eco-system	of	

Hypervisor-level	Services,	Accepted	in	USENIX	ATC,	2017
2. Enabling	Hypervisor-as-a-service	Clouds	with	Ephemeral	

Virtualization,	VEE	2016.
• Prototype	on	KVM/QEMU	Platform

• 0—15%	overhead	on	benchmarks:	Kernbench,	iperf,	quicksort.
• Ephemeral	virtualization:	80ms	average	switching	times
• Page	fault	servicing:	3.6—4.2us;	Event	Redirection:	13-41us.

• Ongoing/Future	Work:
• Supporting	unmodified	L1	hypervisors.
• Live	hypervisor	patching.
• Support	on	public	clouds.
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