Span VM: Multi-Hypervisor Virtual Machines

Enabling An Ecosystem of Hypervisor-Level Services In Cloud

PI: Kartik Gopalan, Binghamton University (SUNY), kartik@binghamton.edu

Problem: Support for 3rd-Party Hypervisor-level Services

1. Growing Number of Hypervisor-level Services: VM Introspection, Intrusion Detection, High Availability, Live Migration, Live Patching, etc.

2. Guests Cannot Simultaneously Use Multiple 3rd-party Services: E.g. Cross-cloud migration, Customized guest security, Attestation, etc.

Solution: Compartmentalize Services & Share Guest Control

Approach: Transparent and Simultaneous Control of Guest by Multiple L1 Hypervisors

- **Guest Transparent**: No modifications to guest.
- **Attach/Detach L1s to/from guest at runtime**: Partial/full control over guest memory, VCPUs, and I/O devices.
- **Event Subscription**: L1s subscribe to guest events via L0.

Status, Results, and Future Work

- **Key Publications**:
 1. *Multi-hypervisor Virtual Machines: Enabling an Eco-system of Hypervisor-level Services*, Accepted in USENIX ATC, 2017

- **Prototype on KVM/QEMU Platform**
 - 0—15% overhead on benchmarks: Kernbench, iperf, quicksort.
 - Ephemeral virtualization: 80ms average switching times
 - Page fault servicing: 3.6—4.2us; Event Redirection: 13-41us.

- **Ongoing/Future Work**
 - Supporting unmodified L1 hypervisors.
 - Live hypervisor patching.
 - Support on public clouds.

Funded by NSF 1527338: CSR: Small: Multi-hypervisor Virtual Machines - Enabling an Ecosystem of Hypervisors in the Cloud

Students: Hardik Bagdi, Rohith Raghavendra, Yaohui Hu, Spoorti Doddamani
Collaborators: Dan Williams, Nilton Bila, Umesh Deshpande, IBM Research Labs