
Testbed Design and Localization in MiNT-2: A
Miniaturized Robotic Platform for Wireless Protocol

Development and Emulation
Christopher Mitchell†, Vikram P. Munishwar, Shailendra Singh, Xiaoshuang Wang,

Kartik Gopalan, Nael B. Abu-Ghazaleh
Computer Science, Binghamton University (State University of New York)
†S*ProCom2, The Cooper Union for the Advancement of Science and Art

Contact: {kartik,nael}@cs.binghamton.edu

Abstract—A significant challenge in the development of robust
wireless networking protocols is often the need to prototype
and test these protocols in a small-scale setting before they can
be widely deployed. Two contrasting prototyping and testing
methods are currently used, requiring a choice between con-
venience and accuracy. The first involves simulating a wireless
network solely in software. Although convenient, this option fails
to accurately account for real-world factors such as realistic radio
propagation models and their interaction with node mobility and
obstacles. The second relies on setting up a large-scale physical
testbed that, although accurate, represents a single design point
and tends to be expensive to reconfigure and manage. The
MiNT project at Stony Brook University was one of the first
to propose an accurate and inexpensive small-scale physical
testbed built using commercially-available robots coupled with
a version of NS2 built to work cooperatively on multiple nodes.
MiNT combines the best features of the two popular performance
evaluation methods, achieving network accuracy comparable to
that of large-scale physical testbeds without abandoning the
convenience and flexibility of software simulation. In this paper,
we describe our initial experiences in developing MiNT-2, the
next generation of MiNT. MiNT-2 represents a fresh redesign of
MiNT that at once simplifies and improves the original design,
and extends it with a range of new features. The paper describes
a number of these improvements including a new, simplified,
node design, an improved node localization using RFIDs, node
position calibration, and automated layout configuration. We also
demonstrate the accuracy of the new localization approach and
outline planned testbed improvements.

I. INTRODUCTION

A major challenge currently facing wireless networking
researchers and developers is to prototype and test their
wireless protocols in a small scale setting before deployment
in real-world conditions. The two predominant options for
research and development in multi-hop wireless networks are
software-only simulation and experimentation using large-
scale testbeds. Network simulators [1]–[3] are particularly
popular due to the convenience of evaluating a variety of
networking configurations in a controlled and fully observable
environment without setting up a physical testbed. However,
network simulator are also known to provide insufficient
fidelity [4]–[6] in capturing radio propagation effects such as
non-uniform path loss, multi-radio interference, and multi-path
fading. In fact, most published papers simply rely on these

tools without double-checking their validity, presumably due
to lack of alternatives.

Recognizing these limitations, an increasing number of
wireless researchers choose to validate their protocols by
performing tests on large-scale custom-built wireless network
testbeds [7]–[9]. Although empirical results collected from
these testbeds are certainly more credible, initial experiences
with them reveal several fundamental limitations. These in-
clude a lack of sufficient flexibility in reconfiguring the initial
topology, mobility patterns, radio settings, significant manual
maintenance effort required to program and recharge nodes,
lack of autonomous 24x7 operation, and most importantly,
large physical space requirements due to relatively long-range
radio coverage. These issues make testbeds limited in terms
of their ability to provide a range of experimental scenarios
for evaluation, and extremely expensive from the standpoints
of experiment setup and routine maintenance.

The MiNT [10], [11] project at the Stony Brook University
was one of the first multi-hop wireless testbeds that “minia-
turized” the physical space requirements of the testbed. Two
key architectural features in the MiNT testbed were (1) the
use of mobile robots to transport wireless network nodes,
and (2) the use of radio signal attenuators to shrink the
physical space requirements of a multi-hop wireless testbed.
Each MiNT node was built from a mobile robot and an
embedded computer equipped with multiple IEEE 802.11a/b/g
WLAN interfaces. The robots used in the MiNT testbed are
inexpensive Roomba [12] robots from the iRobot Corporation,
which can be programmatically controlled via a well-defined
serial API. Node mobility via robots permits protocol devel-
opers to automate the process of reconfiguring the network
topology and to specify the node mobility pattern during an
experiment. This drastically decreases the setup, fine-tuning,
and management efforts required to tailor a testbed to the
needs of a protocol study. MiNT performs node position
localization through computer vision-based robot positioning
and navigation techniques. A self-charging mechanism allows
each robot to detect a nearly-depleted battery and find a
docking station to recharge.

A. MiNT-2: A Fresh Re-Design

Our group at Binghamton University has recently been
developing MiNT-2 – the second generation of an improved
miniaturized robotic platform for wireless protocol develop-
ment and testing. The goal of the MiNT-2 project is two-
fold. First is to reproduce the MiNT testbed’s functionality
independently to carry out wireless networking research within
our group. Second is to improve the original testbed design
and operation along the way through use of more effective
algorithms and technologies. In this paper, we document our
implementation experiences in improving several aspects of
the original MiNT testbed, but in particular testbed design and
node localization techniques. Nodes in MiNT-2 are designed
for low cost and maximal functionality using the latest gen-
eration of iRobot Create robots. The Create offers a mobil-
ity platform with well-documented x86-compatible libraries
and a bidirectional serial protocol for movement control and
feedback, battery charge level, proximity/cliff sensor data, etc.
A low-power x86-based embedded controller board interfaces
with the robot and an RFID reader, provides multiple wireless
interfaces necessary for multi-channel protocols, and runs a
distributed “hybrid” version of the NS2 software package.
Compared to the original MiNT testbed that used camera-based
localization, our MiNT-2 prototype uses a simpler and more
effective three-stage system of motor commands, distance
sensor feedback, and RFID tags on the floor of the testbed that
provide authoritative position information. Power management
is also improved by directly running each node’s on-board
electronics from its robot’s battery, which is automatically
charged by the auto-docking procedure triggered from a low
battery condition detected via the robot’s API. Although cost
reduction was not our primary objective, we did extensively
use commodity hardware to reduce per-node testbed costs to
around $1000, which is significantly cheaper than the nodes
in the original MiNT testbed.

B. Localization

The goal of localization is to allow a node to accurately
determine its own absolute position and orientation as well
as that of other robots in the testbed. The Roomba robots
used in the original MiNT prototype could not sense their
own positions. As a result, they relied exclusively on the cen-
tral controller which used a vision-based position/orientation
tracking system consisting six ceiling-mounted webcams with
overlapping image planes. This system was used to track
node location and to command the robots on which direction
to move at any instant. To account for growing discrepancy
over time between the central controller’s per-node position
information and the actual node positions, mobile robots were
manually brought to fixed locations to re-synchronize their
logical and physical node positions, periodically. Each node
was identified using unique color patches mounted on the
mobile nodes. Since this system relied on visual identification,
it tended to develop inaccuracies over time if any of the six
cameras moved slightly, or color patterns on the nodes faded,
or lighting varied.

We redesigned the localization mechanism from scratch
in the MiNT-2 testbed to overcome the limitations of its
predecessor. Our new localization mechanism uses inexpensive
RFID technology coupled with enhanced mobility sensors
within the Create robot to reduce maintenance overheads,
which helps achieve high levels of accuracy. Since the RFID
tags are distributed within the testbed area, a node can localize
itself whenever it crosses an RFID tag, by assigning the
position of the tag to itself.

In the remainder of the paper, we first give an overview of
the current and planned features of MiNT-2, present the details
of improved node design, and localization, and finally present
a preliminary performance evaluation of our current testbed.

II. OVERVIEW OF MiNT-2 FEATURES

We now provide an overview of the key features of the
MiNT-2 testbed as well as ongoing developments. This will
be followed by a detailed description of two aspects of the
system design we explore in this paper, namely: MiNT-2 node
design and node localization.

[Miniaturization] MiNT-2 significantly reduces the physi-
cal space requirement of a multi-hop wireless network testbed,
just as in the original MiNT testbed does, by attenuating the
radio signals in a controlled fashion. This space reduction
drastically decreases the setup, fine-tuning, and management
efforts required to tailor a testbed to the needs of a protocol
study. A MiNT-2 node is an embedded computer mounted on a
Create robot [13] – a low-cost (less than $250) programmable
robot from iRobot. Create robot supports a basic set of
externally controllable movements, is able to carry a large
payload (up to 30 pounds), and comes with an effective auto-
recharging capability. Mounted on each Create is a Soekris
net5501 embedded board, which is a low-power small-form-
factor computer with a 433MHz processor and runs on power
from Create’s internal battery. Net5501 has a PCI extension
board (RB-52), which allows us to put 4 Atheros-based 802.11
a/b/g mini-PCI cards to support multi-radio experiments [14].
A radio signal attenuator [15] is inserted between each wireless
LAN interface and its antenna to reduce the transmitted and
received signal strength and thus the physical space require-
ment.

[Autonomic reconfigurability and management] The use
of programmable Create robots in the MiNT-2 testbed allows
a user to configure an arbitrary initial network topology and
to set up an arbitrary node mobility pattern during a simu-
lation run. MiNT-2 automates the support for such flexibility
by employing physical-level radio signal measurements and
RFID-based robot positioning and navigation techniques. A
key requirement for the MiNT-2 infrastructure is to be an
autonomic testbed that is remotely accessible for 24x7 op-
eration without human intervention. Usually, battery charging
is a manual process requiring the administrator to take dis-
charged nodes to charging sockets [16]. MiNT-2 features a self-
charging mechanism that allows Create robots to recharge their
battery when they run low, thus completely eliminates manual
charging efforts. This mechanism, together with automated

robot positioning and navigation, allows MiNT-2 to sustain
24x7 operation without human intervention.

[Support for protocol development, testing, and debug-
ging] MiNT-2 is aimed primarily as a platform for wireless
protocol implementation, testing, and debugging. We are cur-
rently enhancing MiNT-2 to support the following capabilities:
(1) a network fault injection and result analysis tool that will
allow protocol developers to declaratively specify high-level
network fault patterns (e.g., three consecutive packet drops
after receiving the second ACK) and the desired responses
to these faults, inject the specified faults, and automatically
analyze the responses of the protocol under study; (2) a
distributed debugger that will allow a protocol developer to
pause/resume, single-step, breakpoint, and roll-back a simula-
tion run, and (3) a visualization interface that will provide real-
time view of the testbed configuration, traffic load, node/link
liveliness, and evolution of protocol-specific states, and allow
users to steer a simulation run by modifying protocol/network
configuration and input load parameters on-the-fly. We are also
developing an application programming interface (API) for
users to implement and test wireless protocols and applications
directly on MiNT-2 without detouring through NS2. This API
will incorporate two facilities for wireless protocol/application
development: access to low-level details of wireless LAN
interface and user-level TCP/IP stack. To this end, we are
developing a procedural interface to the Linux Wireless Ex-
tension (WE) [17] package that exposes network interface
configuration and run-time statistics common to wireless cards.

[Running existing simulation code on MiNT-2] Many
existing wireless protocols are written as NS2 simulation mod-
els. Just as with original MiNT, MiNT-2 provides the ability
to directly execute existing NS2 scripts and models on the
testbed. MiNT-2 includes a distributed execution version of the
NS2 engine where (1) the simulations of physical and MAC
layer protocols are replaced by direct execution on the WLAN
interface hardware, and (2) higher-layer protocol simulation of
each simulated node runs on a separate MiNT-2 testbed node.
To run NS2 on a MiNT-2 testbed, each link-layer frame is
wrapped and sent to its destination as a UDP packet. On the
receiving node, the packet is extracted from the UDP payload
and a new packet receive event is generated and scheduled.
This way, the physical and MAC layers of a simulation run
are based on direct execution rather than software simulation.
Compared with software-only NS2, MiNT-2 thus provides the
same user interface to start and monitor NS2 simulation runs,
but produces higher-quality simulation results faster because
it does not simulate MAC and physical layers in software.

[Control server] A central control server presents a single
front-end interface for the end user to interact with the MiNT-2
prototype. For example, to run an NS2 simulation on MiNT-2,
the user simply starts the NS2 script on the central controller,
which then takes care of parsing, rewriting, and propagating
the script, synchronizes the system clocks, and starts the
distributed simulation run. In addition, it also coordinates the
operation and physical movement of the wireless nodes by
sending commands and receiving responses using a special

iRobot Create with battery and charger $250
Soekris net5501 x86 embedded board $260
PCI to 4x miniPCI adapter card $65
4x R52 802.11a/b/g cards $200
4x antennae $60
3x attenuators $100
ID-12 RFID reader $30
Small miscellaneous components $35
Total $1000

TABLE I
PER-NODE COST IN MiNT-2-2

control protocol over a a dedicated 802.11g channel. All
control traffic is transported on an IEEE 802.11g channel,
which does not interfere with IEEE 802.11a channels, which
are used in actual experiments. The central controller receives
inputs from robots over the control channel about their current
position/orientation and sends movement commands to mobile
nodes as per execution requirements.

[Limitations of MiNT-2] Although MiNT-2 represents a
significant advance in the emulation technology for mobile
wireless networking research, it has its share of limitations.
First, MiNT-2 does not physically miniaturize the real-world
around the testbed. Rather it attenuates radio signals. There-
fore, it cannot reproduce exactly the same signal propagation
characteristics as in a real-world wireless network due to the
presence of physical objects, such as walls, doors, tables, and
humans. To be sure, this appears to be a fundamental limitation
of any reconfigurable wireless testbed, because it is difficult to
duplicate all the factors that affect the radio signal propagation
characteristics of a given real-world wireless network. Second,
radio signal attenuators only attenuate the signals transmitted
from sources under MiNT-2’s control, but not from other radio
sources such as nearby microwave ovens or production-mode
WLAN interfaces. This means that when a MiNT-2 testbed
is deployed in an environment where there are other radio
sources, its signal to noise characteristics may not be the same
as those of the non-attenuated version it emulates. For exam-
ple, experiences with earlier MiNT prototype indicate that the
ratio between sensing range and hearing range between a pair
of wireless nodes is increased as a result of miniaturization.
This problem is less serious if the physical location hosting
the MiNT testbed is relatively free from external radio sources.

III. NODE DESIGN

The design of our MiNT-2 prototype node has been im-
proved over several iterations before we finalized a setup to
minimize per-node complexity, permit all necessary MiNT
functionality, and provide expandability for future uses of the
testbed. In this section, we describe the details of the MiNT-2
node and testbed design which is shown in Figures 1, 2 and
3. Table I shows the approximate cost breakup for a MiNT-2
node with total per-node cost around $1000, substantially less
than the per-node cost of a functionally comparable node in
the original MiNT testbed.

[Mobility Using The iRobot Create] We used the iRobot
Create platform to achieve node mobility, since it offers the

Fig. 1. Physical layout of a MiNT-2 node. Fig. 2. Picture of a MiNT-2 node. Fig. 3. Picture of the MiNT-2 testbed. RFID cards
are marked red.

full range of motion we require – forward, backwards, in an
arc, or in-place rotation – and includes an easily-interfaced
serial control protocol. The Create is a developer-friendly
robot, which differs from the commercial Roomba robotic
vacuuming robot used in the prior MiNT testbed in that it
provides a much more complete interface for controlling the
robot. One of our goals was to eliminate the external battery
necessary in previous wireless testbeds to power the embedded
controller board, so we looked only at boards capable of
running on the 15V, 1.5A unregulated voltage supplied by the
robot. The embedded board used direct serial control to issue
commands to and read sensor data from the robot. The robot
has full freedom of 2-dimensional movement. Each Create can
move forward and backwards at velocities between 1 and 500
mm/s in increments of 1mm/s, turn in place, and move in
forward and backward arcs from 1 to 2000mm in radius in
steps of 1mm. The robot, besides functioning as the mobility
component of each node, provides three classes of connections
from a DB-25 connector on the inside of its cargo bay: a
57,600-baud bidirectional control interface, an unregulated 15
volt (1.5 amps) power for the embedded board, and 5 volts
(100 milliamps) to power an external RFID reader chip. We
describe these in detail later.

[Embedded Control Board] From the beginning of the
design process, we assumed several minimum requirements
for the embedded board to be mounted on each node. First
and foremost, it needed to have sufficient computing power
to run full-fledged unmodified networking applications and
simulation packages, such as NS2, and needed to support a
modern distribution of Linux. Secondly, it needed an RS232
serial port to interface with the robot, and later, a second serial
port to receive data from the RFID reader in each node. It
also needed to consume relatively little power, and accept a
variable-voltage power supply. Thus, a board with a built-in
voltage regulator was preferable. In addition, we wanted to
eliminate the hard drive used in the original MiNT testbed and
rely solely on flash-based memory such as Compact Flash
(CF) or Secure Digital (SD) cards [18]. Finally, to perform
multiple-channel simulations and provide future expandability,
we wanted at least four wireless interfaces per node.

The Soekris net5501 board met our specifications, provided

additional features, and supported a functional Linux operating
system. The net5501 is built around an x86 compatible AMD
Geode processor running at 433MHz with 256MB of RAM, a
Compact Flash slot, a single miniPCI slot, and a PCI riser slot.
By adding a PCI expansion card, we were able to connect four
additional miniPCI wireless cards for a total of five wireless
interfaces. The Voyage Linux distribution worked out of the
box, and with some basic setup, the Madwifi drivers built into
Voyage for Atheros wireless cards recognized and initialized
all five wireless interfaces. The Soekris board can accept 5
to 25V DC, and draws well under the 27-watt maximum
continuous power that the iRobot Create can provide.

[Automatic Node Recharging] Automated recharging adds
to the robustness of the testbed, as it allows the testbed to be
used remotely for extended periods of time. It minimizes the
need for local administration, specifically, manually bringing
each node to a recharging station or plugging a power supply
into each robot. Create robots are designed to use a docking
station to self-charge their batteries. The docking station emits
IR beacons that enable a Create robot with depleted batteries
to home in to the station automatically and recharge. MiNT-
2 nodes use the robot’s built-in docking algorithm and check
the battery charge level using the Create’s API to determine
when battery failure is imminent. In our design, the net5501
embedded board is powered using the Create’s own battery,
as opposed to the earlier MiNT prototype which required
a separate universal laptop battery to power the onboard
computer. We reverse engineered the level-shifting circuitry
of Create so that the net5501 board can be powered using
Create’s internal power source. Unlike the Roomba robot used
in earlier MiNT prototype, the Create robot in MiNT-2 provides
an interface to probe the residual charge in its battery. We use
a residual battery capacity estimation algorithm to track the
battery status and to determine when to recharge which nodes.
Section V provides details on both the charge estimation
algorithm and battery performance.

[Wireless Setup] Each node needs at least two communi-
cations interfaces: one for node control and one or more for
data exchange. The control interface is used to communicate
between the controller node and each individual node, while
the data interfaces are used to communicate with other nodes

during experimentation. Bluetooth, 802.11a, and 802.11b/g
were considered for the control and data interfaces. We
determined that 802.11a would be the best choice for data
channel due to higher bandwidth and less interference with the
2.4 GHz spectrum, leaving 802.11b/g free for control packets
communication. The R52 is a low-power miniPCI wireless
card supporting 802.11a/b/g based on the Atheros AR5414
chipset. It requires Madwifi drivers, that are included by
default in Voyage Linux. While the four wireless interfaces in
each node are intended primarily to experiment with multiple
channel protocols and MIMO capabilities, other possible uses
include using each physical node as up to four virtual nodes.
Virtualizing nodes would permit four times as many wireless
clients to be simulated in the testbed, with the caveat that each
of the virtual clients contained in a physical node would be in
the same physical location at all times.

[Miniaturization of Radio Channel] The maximum trans-
mit power of each R52 card used in our testbed is 65mW.
Two methods are paired to reduce this power and thus limit
the range of the card: electrically attenuating the antenna
connection, and reducing the transmission power in software.
The iwconfig utility built into Voyage Linux allows a reduction
in transmission power down to 1mW, but as observed in the
earlier MiNT prototype [19], this does not sufficiently limit
each node’s range. The physical space requirement of the
MiNT-2 testbed is further reduced by inserting a radio signal
attenuator [15] between the WLAN interface and its antenna
on each mobile node. By combining hardware and software
attenuation control, we are able to adjust the range of each
wireless interface at a fine granularity. Each mini-PCI WLAN
card on the net5501 board is connected to a 2 dBi external
antenna through a 20 dB attenuator. In addition to the fixed
attenuation, the transmit power on the mini-PCI cards can be
altered by another 17 dBm to provide additional flexibility in
tuning inter-node signal to noise ratio. Since a radio signal
attenuator reduces the strength of the input signal and relays
the result to its output completely in the analog domain, it
does not incur any observable performance overhead.

IV. NODE LOCALIZATION

Our localization infrastructure has three components. First,
the robot’s wheel motors can be controlled in terms of distance
per second, and each wheel’s speed can be varied in integer
steps between -500mm/s and 500mm/s. This system by itself
may accumulate error over time from mechanical variation,
and also fails to take into account mechanical acceleration
and deceleration after start and stop commands are issued.
To detect and correct for these inaccuracies, at the second
level, each of the robot’s two driving wheels includes an
axle-mounted rotation sensor that measures the actual distance
each wheel has traveled. The sensors can be queried via
the serial interface, and return both distance traveled by the
robot since the last query (in mm) and angle the robot has
rotated through since the last query (in degrees). Since the
data read from wheel-rotation sensors is used to estimate both
change in orientation as well as the change in distance, any

inaccuracies present in angle measurement can cause errors in
distance estimates as well. Over time, even the accumulated
sensor measurements may grow inaccurate due to rounding
errors, wheel slippage, and encoder inaccuracy. In addition,
a node may be manually picked up and moved to a new
location. Thus, a third absolute positioning system is needed
to periodically re-calibrate the node’s position and orientation
in the testbed space. We considered a wide assortment of
localization technologies before settling on RFID as the most
cost-effective and sufficiently accurate method.

[RFID-based Localization Algorithm] An array of fixed
RFID tags on the floor of the testbed allow each robot to
determine its absolute location with an uncertainty equal to
the maximum tag sensing radius of the RFID reader (2.25cm).
We mounted ID-12 RFID reader at the base of each node’s
cargo bay, soldered it to a breakout board, and wired it via
a DB-10 connector to the internal serial connection of the
net5501 embedded board. The RFID reader, which is used to
determine the node’s absolute (x, y) position within the testbed
by matching the IDs of the RFID tags with a static translation
table of ID to coordinates, corrects for errors in the sensors
and compensates for extraneous interactions such as hitting
an obstacle or researchers lifting and manually relocating the
nodes. The localization system is currently implemented as
a set of functions detailed below, with preliminary accuracy
measurements presented later.

The heart of the localization algorithm is a section of code
running periodically every 50ms that is in charge of acquisition
and processing of data from movement sensors and the RFID
reader. Figure 4 presents a more structured view of the
localization algorithm. Every time the localization tick runs,
it reads the delta change in distance and orientation since the
last sensor access, adds the changes to the last known position
and orientation respectively, and clears the sensors. In addition,
more precise position and orientation calibration is performed
when passing over RFID tags to remove accumulated error
from the Create’s sensors feedback. RFID data is considered
more authoritative than sensor data, and has priority whenever
information from the sensor and the RFID sources disagree.
Once at least two tags have been read, the node can determine
its orientation from the coordinates of each tag, its orientation
at the first tag, and the amount of node rotation between the
first and second tags.

A node may move from one tag to the next in a variety
of ways. If the node moved in a straight line (no change in
orientation over time with forward motion) or arc of constant
radius (constant rotation over time with forward motion), the
RFID data is used to calculate the node’s heading at the second
tag. The orientation at the second tag can be calculated using
the current (x2, y2) position read from the current tag, the
position (x1, y1) at the previous tag, and the node’s rotation
(change in orientation) between the two tags as measured by
its sensors, ∆θRFID:

Localize_Tick

Obstacle

at last

tick?

Yes

No

Back up Stop

Reset SensorsSet obstacle flag

Destination

Flag?

Yes

No

Destination

motor adjustment

Read Sensors

Update

x, y, theta

RFID tag

read?

Yes

No

Complete.

Set previous and

current RFID

x, y with offset

Obstacle

since last

RFID?

Yes

No

Calculate

orientation

from RFID

Calculate

orientation

from sensors

Fig. 4. Scheduled localization tick algorithm.

θ = (tan−1[(y2 − y1)/(x2 − x1)] + ∆θRFID/2) mod 360
(1)

If the node travels in a straight line, then ∆θRFID is 0
and the equation reduces to the trivial case. If it traveled in
a constant-radius arc, its deviation from the straight line path
between the two tags is equal in magnitude at both tags, but
opposite in sign. In other words, since the node traveled in
an arc of constant radius, it would have been oriented as
far to one side of the straight line path between the tags at
the first tag as it was to the other side of the path at the
second tag. Thus its rotation between the two tags is twice
the individual magnitude of deviation from a straight- line
path at each tag, and current orientation can be determined
solely from the ∆θRFID and two pairs of position coordinates
while discarding all orientation and position data up to the
first of the two tags. Figure 5 elaborates more the robot’s
orientation calculation for the constant-radius arc movement.
As only the change in rotation between the two tags is retained,
accumulated inaccuracy from the on-board rotation sensors is
discarded each time this calculation is performed.

If instead the robot travels from one tag to the next in
an arc of non constant radius or encounters any obstacles
between the two sequential tags, the RFID data is only used
to determine position, and node orientation is calculated using
the incremental change in rotational sensor reading since
the last localization tick. Also, the structure of a MiNT

θRFID /2
RFID tag 2
(x2,y2)

Constant-radius arc

Straight line pathStraight-line path
between tags

θRFID /2

RFID tag 1
(x1,y1)

Fig. 5. Orientation calculation for constant-radius arc movement.

node itself slightly complicates localization because the RFID
reader cannot be placed exactly at the center of the node.
The internal sensors return data most accurate at the point
halfway between the robot’s two axles, but the RFID reader
is located 147mm behind this point. To compensate for this
offset, the sensor-derived position information is combined
with the (x, y) coordinate of the RFID tag to calculate the
actual position of the center of the robot. Future modifications
to the node design are accommodated by maintaining two
constants, RFIDOnAxis and RFIDOffAxis, containing the
distance in mm from the center of the robot to the center of
the RFID reader parallel and perpendicular to the direction of
forward motion, respectively.

[Initial Node Calibration] Our goal in MiNT-2 is to com-
pletely automate the steps of calibration and initial positioning
and of the nodes. Accurate calibration means that the testbed
operator can drop each robot anywhere in the testbed and the
robot automatically positions itself at a nearest reference point
with known orientation. Following calibration, the node then
automatically moves to an initial position/orientation specified
in the experimental scenario. The calibration step of each
node’s position and orientation is performed by traversing
the testbed in a series of straight lines. If a node reaches
an obstacle, such as a wall or another robot, it rotates and
attempts another straight line movement. Calibration is only
considered successful if the node reads two RFID tags over
a straight line movement. Correct calibration of position is
further complicated by the off-center RFID reader, but the
offset is handled by the localization tick as detailed in the
previous section. Orientation can be calculated from two
collinear RFID tags regardless of the node’s offset, but ac-
curate position determination taking the RFID reader offset
into account requires the authoritative heading of the node

to be predetermined. Thus, after passing the second tag, the
node’s orientation is calculated from the tabulated positions of
the two RFID tags as given in equation 1, while its position
is determined from the tabulated position of the second RFID
tag corrected with an offset calculated from the now-initialized
orientation. Once initialization of both position and orientation
is complete, the node stops and is ready to receive an initial
position for a simulation scenario. Given that the first RFID
tag crossed is at (x1, y1) and the second is at (x2, y2), the
position and orientation at the second tag are:

θ = arctan[(y2 − y1)/(x2 − x1)] (2)
x = x2 + RFIDOnAxis cos(θ) + RFIDOffAxis sin(θ) (3)
y = y2 + RFIDOnAxis sin(θ) + RFIDOffAxis cos(θ) (4)

For our nodes’ construction, RFIDOnAxis, was 147mm and
RFIDOffAxis was 0mm.

[Network Layout Initialization] Before a scenario execu-
tion, the user can specify the topology as well as the node
locations of the target network. After calibration, each node
then travels to the user-specified initial position and orients
itself in a specific direction before an experimental scenario
begins. User can also modify the initial location of a node
and have the controller instruct the corresponding robot to
move accordingly. During this process, every testbed node is
constantly measuring the radio signal strength between itself
and each of its neighbors within hearing range, and relaying
the information to the central controller, which then feeds
it back to the user. Such interactive initial placement and
feedback greatly simplifies the network setup effort because
the administrator no longer needs to manually move the robots.

V. PERFORMANCE

A. Battery Performance

Figure 6 shows the results of battery tests and reveals that
node longevity matches the worst-case measurements for other
testbeds. Note that only data for the standard battery has been
presented because node life did not vary significantly between
the standard and extended batteries from iRobot, presumably
due to the presence of embedded control board. Nodes are
able to move continuously while running the Soekris board
for 2.25 hours before the battery discharges completely. Tests
performed with static nodes transmitting constantly achieve
3.6 hours of battery life. Board clock speed and node move-
ment speed remain constant to the limits of the applicable
sensors regardless of current battery level. The distinctive
shape of the discharge curve provides a strong indication of
impending battery failure. As expected, motor operation claims
the largest impact on longevity, while a single active wireless
interface only removes twenty minutes of battery life. Multiple
simultaneously-active interfaces are expected to incur a linear
toll on the battery.

B. Localization

As discussed earlier, our localization mechanism uses a
combination of readings obtained from distance and angle

Fig. 6. Standard battery life on an idle node, a continuously-transmitting
node, and a continuously-moving node.

sensors mounted on the robot and pre-deployed RFID tags.
Specifically, we use RFID tags to recalibrate current position
and orientation of the robot. However, since the RFID tag
can be detected by the RFID reader, immediately when it
comes in the range with the tag, (which is a circle of 2.25
cm radius), the RFID tags based error calibration has a
maximum error bound of 2.25 cm. In this section, we first
describe our experiments to measure accuracy of distance and
angle sensors, and then present the results representing error
estimates for the localization algorithm.

1) Sensor Accuracy: In order to calculate error bound for
the distance sensor, we created multiple scenarios of RFID
tags by keeping them in straight line and varying distance
between a pair of tags for different scenarios. We programmed
the node to move in a straight line such that it will encounter
the RFID tags placed along the way. The distance sensor
value was calibrated at each encountered RFID tag and the
error was noted, where the error is the difference between
the (x,y) position represented by the distance sensor and
that of the detected RFID tag. In Figure 7, values along x-
axis represent the distances between a pair of RFID tags for
different scenarios, whereas y-axis represents the error in the
distance sensor readings.

We can observe that the error in position estimates is less
than 2 cm. However, for all the scenarios used in our setup,
we did not observe an explicit trend in the estimates of errors
with respect to the increase in distance between two tags. The
difference in the error estimates for different scenarios is due
to the mismatch between the timings of reading an RFID tag
and the distance sensor (which is read every 50 milliseconds
by the localization algorithm).

To calculate error bound for the angle sensor, we kept RFID
tags in a pyramid like structure and moved the robot from the
tip to the base of the pyramid in a straight line. The height of
the pyramid was the length of our testbed area, and closely-
spaced sets of RFID tags were kept in a gap of fixed distance
along the height of the pyramid. Thus, based on the RFID
tags that the robot has encountered along its straight line path,
we calculated the difference between the angle obtained using
RFID tags information and the angle obtained from the angle-

sensor. Figure 8 shows the change in the robot’s angle when
it is moved in a straight line path, across multiple trials. For
this experiment, the robot’s movement was kept perpendicular
to the x-axis of the coordinate space of our testbed. The
figure shows that when the robot is moved in a straight line,
it sometimes changes its angle by 0.5 degrees, as it can be
observed for trial numbers 3 and 5.

2) Position Accuracy: For this experiment, we arranged the
RFID tags in a uniform grid and moved the robot in a random
fashion over the deployed area of RFID tags. We kept track of
three readings for calculating (x, y) coordinates of the robot
when it encountered an RFID tag: (1) sensors-based readings:
obtained from the angle and distance sensors, (2) estimated
readings: readings obtained by combining information from
RFID-tags with the sensors readings, and (3) RFID-based
readings: actual coordinates of the RFID tags.

We conducted three experiments to estimate position ac-
curacy of the robot. The error in sensor-based readings and
RFID+sensors based (estimated) readings is obtained by cal-
culating their Eucledian distance with the actual RFID-tag
position. Figure 10 presents a graph comparing errors for
sensor-based and RFID+sensors based readings. It can be seen
that the error for RFID+sensors based approach is much lower
than just the sensors based readings. Additionally, the sensors
based readings show an increasing trend as the duration of
the robot’s movement increases. Similarly for Figure 11, and
Figure 12, we changed the interval between successive position
updates, and velocity of the robot respectively. It can be
noted that the average localization error for just sensors-based
readings is higher than the RFID+sensors based readings in
both the graphs. Overall, for larger value of position-update-
interval (e.g. 100 milliseconds), and larger value of velocity
(e.g. 400 mm/s), localization error for both the approaches is
on a higher side, and thus such values of these parameters
should be generally avoided.

C. Wireless Range and Attenuation

When operating without attenuation and with only the
control interface active, range was found to exceed 200
meters of open space. Figure 9 shows variations in the RSSI
values observed at the receiver with respect to the distance
between the sender node and the receiver node, with and
without attenuation. In our experiment, we used a fixed signal
attenuator of 20 dB at the sender, and moved the receiver with
the granularity of 1 ft. The transmission power at the sender
was kept as 1 dBm. It can be noticed that the variation in RSSI
values follows a similar trend with and without attenuation. In
addition to the RSSI values, we also measured the reception
throughput at the receiver. For the communication without
attenuation, the throughput observed was consistently above
95% within the distance of 1 ft. to 7 ft. However, with 20
dB attenuation, throughput above 80% was observed for the
distance up to 2 ft., beyond which the throughput degraded
gradually, resulting in 0.8% of throughput at the distance of
7 ft.

VI. RELATED WORK

[Network Simulators] Network simulators [1]–[3] have
been popular among wireless networking researchers, primar-
ily due to the convenience they afford in evaluating wire-
less protocols while eliminating the need to set up a large
physical networking infrastructure. However, in spite of their
popularity, it has been shown that most simulation tools do
not accurately emulate the majority of real-world radio signal
propagation effects such as non-uniform path loss, multi-radio
interference, and multi-path fading [5], [6]. Often researchers
rely on these simulation tools to generate results without cross-
checking the accuracy of the underlying models. Concerns
about simulation accuracy are particularly timely when the
wireless networking community is gravitating toward research
on cross-layer protocol optimizations, such as hop-by-hop
error control, MAC-layer anycast, and signal strength-aware
routing, where accurate physical-level radio channel models
are essential.

[Large Testbeds] Recognizing these limitations, an increas-
ing number of wireless researchers choose to validate their
protocols by running their protocol implementations on larger
custom-built wireless network testbeds [7]–[9]. Although em-
pirical results collected from these testbeds are certainly
more credible, initial experiences with them reveal several
fundamental limitations. First, users of these testbeds do not
have the flexibility to reconfigure the network connectivity by
specifying an initial topology, moving the nodes around, or
setting pairwise signal-to-noise ratios. Second, those testbeds
that do support node mobility require significant manual
maintenance efforts for node charging and positioning, and
thus cannot work as an autonomic research infrastructure that
supports 24x7 operation. Finally, physical distance between
adjacent wireless nodes is critical because it affects the quality
of connectivity between them. Most current wireless research
targets IEEE 802.11 WLANs or cellular networks, both of
which have relatively long-range radio coverage. Therefore
testbeds designed to support meaningful protocol studies on
these large testbed need to span a large geographical area so
that they can contain a reasonable number of wireless nodes
which do not fall within the same collision domain.

[Small-Scale Testbeds] Among other existing wireless net-
work testbeds, Orbit [20], [21], Emulab [16], [22], and CMU
Wireless Emulator [23] are closest to MiNT-2. In contrast to
MiNT-2, which performs radio signal attenuation, Orbit uses
explicit noise injection to control the signal-to-noise ratios
between selected pairs of nodes. This approach cannot scale
to a large number of pairs because it may be impossible
to generate an external noise profile that can simultaneously
satisfy the signal-to-noise ratio requirements of all active
pairs. Emulab did not attempt to solve the problem of setting
up a multi-collision-domain network within a small physical
space. CMU Wireless Emulator uses an FPGA-based DSP
engine to emulate the signal propagation environment between
nodes. Compared to simulations, the emulator uses real MAC
and PHY layers, and supports real applications. However the

0 10 20 30 40 50 60 70

Distance Between Tags (centimeters)
0

5

10

15

20

25

30

35

40

45

50

Po
si

tio
n

E
rr

or
 (

in
 m

ili
m

et
er

s)

Fig. 7. Error estimate for distance sensor

1 2 3 4 5

Trial Number
89.4

89.5

89.6

89.7

89.8

89.9

90

90.1

90.2

90.3

90.4

90.5

A
ng

le
 (

de
gr

ee
s)

Fig. 8. Error estimate for angle sensor

0 1 3 5 7
Distance between two nodes (in ft.)

-80

-70

-60

-50

-40

R
SS

I
(i

n
dB

m
)

No attenuation
20 dB attenuation

Fig. 9. Distance vs. RSSI

0 100 200 300 400 500
Time (s)

0

250

500

750

1000

1250

D
is

ta
nc

e
E

rr
or

 (
m

ili
m

et
er

s)

Sensor Only
RFID + Sensor based

Fig. 10. Errors in sensor-only vs. RFID+sensor-
based localization with time.

50 60 70 80 90 100
Time interval between position updates (in miliseconds)

0

200

400

600

800

L
oc

al
iz

at
io

n
E

rr
or

 (
m

ili
m

et
er

) Sensor Only
RFID+Sensor based

Fig. 11. Errors in sensor-only vs. RFID+sensor-
based localization with update frequency.

100 150 200 250 300 350 400
Velocity (mm/sec)

0

100

200

300

400

500

E
rr

or
 (

m
ili

m
et

er
s)

Sensor only
RFID+Sensor based

Fig. 12. Errors in sensor-only vs. RFID+sensor-
based localization with node velocity.

FPGA-based emulation of RF signal propagation can only
be as accurate as the accuracy of the models that it is
programmed with. MiNT-2, besides using real MAC and PHY
layers, preserves the time-varying nature of the RF propagation
characteristics observed in real-world. MiNT-2 also provides
true node mobility and autonomic 24x7 testbed operation. On
the other hand, Orbit “simulates” node mobility by migrating
the simulation process for the mobile node from one physical
node to another. Because Orbit’s nodes are organized as a fixed
grid, the node mobility pattern that Orbit can support is less
flexible than MiNT-2. Mobile Emulab [16] also uses mobile
robots to support node mobility but requires frequent manual
recharging.

Furthermore, all the above testbeds lack the mechanism to
inject controlled distributed faults into a wireless environment
to determine the effect of malfunctions and failures. Moreover,
the other testbeds’ robotic platforms must be manually taken
to their charging stations every 2-3 hours. The iRobot Create
comes with a high capacity battery and an automatic charging
dock, as well as a serial level-shifter that can be easily
modified for our purposes, making the Create a particularly
cost-effective solution.

[Localization] There is a large body of work [24] on local-
ization in the context of ubiquitous computing, location-aware
services and robotics research. Our focus in the MiNT-2 testbed
has been on developing a simple, inexpensive, and practical
localization technique for robots used in wireless protocol
development and testing context. We considered active and
passive infrared triangulation as well as an infrared version
of the Stony Brook vision system that would use patterns of

infrared LEDs instead of colors to identify each robot and
provide its location and heading. MIT’s Cricket ultrasonic lo-
calization [25] was also considered. However the cost of these
systems combined with the significant associated computation
burden rendered it unsuitable for our application. A pressure-
based system called SmartFloor [26] would not have been able
to differentiate between the nodes, although it is well-suited to
determine the precise location of each node. Mobile Emulab
[22] also uses a vision based image processing technique for
localization, using two color pattern on top of each robot. In
addition to sharing the same drawbacks as the original MiNT
testbed, the two color patterns cannot help identify the robots
individually. MiNT-2 nodes do not run into these problems
because an inexpensive RFID reader is mounted on each robot
and thus the node itself can detect/compute its location without
relying on an external entity for identification. RFID based
localization techniques have also proven effective in other
contexts for both large-scale localization [27] and more limited
table-sized applications [28].

VII. DISCUSSION AND FUTURE WORK

As described earlier, MiNT-2 primarily aims at improving
accuracy of simulations, and reducing complexities associated
with conducting experiments on large scale wireless testbeds.
In that sense, MiNT-2 can be used as a stepping stone for
protocol development and evaluation before actual deployment
and testing of a protocol in a larger testbed. However, MiNT-2
has its share of limitations. For instance, the current MiNT-
2 prototype primarily supports 802.11 family of protocols
and does not support the cellular communication technology.
Another limitation of it is that while MiNT-2 miniaturizes

the radio propagation, it obviously does not miniaturize the
physical space or the node movement patterns.

Improvements to the MiNT-2 testbed are ongoing. As dis-
cussed in the Section II, the original MiNT, as well as MiNT-
2 provide the ability to directly execute NS2 simulations on
the testbed. We plan to extend MiNT-2 further to support
GloMoSim [2] and the more recent NS3 [29]. Moreover, we
plan to improve the accuracy of the RFID-based localization
mechanism by experimenting with different RFID tag densi-
ties, as well as by fine tuning the robot orientation calculation
mechanism.

VIII. CONCLUSION

In this paper, we described the improved testbed design and
localization techniques in MiNT-2 – a ground-up re-design of
the predecessor MiNT project from Stony Brook. Our vision
is to simplify the architecture for designing a fully functional
miniaturized wireless protocol development and testing plat-
form, so that any networking research group in the world
can easily set up such a testbed using commodity hardware
and open-source software. Each node in MiNT-2 is comprised
of an iRobot Create providing mobility to the node, an ID-
12 RFID reader performing localization, a Soekris net5501
x86-compatible embedded board directing the robot, and five
wireless network interfaces with attenuators and antennae
for control and communication. Node localization system is
implemented using robots internal sensor and external RFID
data, including the functionality to automatically calibrate
each node’s position and initialize initial network setup. The
testbed took slightly more than two months to design and
construct from scratch into a working form (including waiting
for shipment of parts), and per-node cost has been kept to
around $1000, even though cost reduction was not the primary
objective.

ACKNOWLEDGMENT

We’d like to thank members of the Stony Brook’s MiNT
group, in particular Rupa Krishnan, Jui-hao Chiang, and Tzi-
cker Chiueh, for their active support in helping construct
MiNT-2 from scratch. This work is supported in part by the
National Science Foundation through grants CNS-0751161
and CCF-0649252.

REFERENCES

[1] Information Sciences Institute, “The Network Simulator – NS-2
http://www.isi.edu/nsnam/ns/.”

[2] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A Library for Parallel
Simulation of Large-Scale Wireless Networks,” in Workshop on Parallel
and Distributed Simulation, May 1998.

[3] Scalable Network Technologies Inc., “QualNet WiFi simulator,” in
http://www.scalable-networks.com/products/qualnet wifi.php, 2004.

[4] J. Heidemann, N. Bulusu, and J. Elson, “Effects of Detail in Wireless
Network Simulation,” in Proceedings of the SCS Multiconference on
Distributed Simulation, January 2001.

[5] M. Takai, J. Martin, and R. Bagrodia, “Effects of Wireless Physical
Layer Modeling in Mobile Ad Hoc Networks,” in Proceedings of
MobiHoc, Oct 2001.

[6] J. Heidemann, N. Bulusu, and J. Elson, “Effects of detail in wireless
network simulation,” in SCS Multiconference on Distributed Simulation,
January 2001.

[7] D. Maltz, J. Broch, and D. Johnson, “Experiences Designing and
Building a Multi-Hop Wireless Ad-Hoc Network Testbed,” in Technical
Report 99-116, School of Computer Science, CMU, Mar 1999.

[8] H. Lunndgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tscudin,
“A Large-scale Testbed for Reproducible Ad Hoc Protocol Evaluations,”
in Proceedings of Wireless Communications and Networking (WCNC),
2002.

[9] Daniel Aguayo et al., “MIT Roofnet Implementation
http://www.pdos.lcs.mit.edu/roofnet/design/,” August 2003.

[10] P. De, A. Raniwala, S. Sharma, and T. cker Chiueh, “Mint: A miniatur-
ized network testbed for mobile wireless research,” In Proceedings of
IEEE Infocom, 2005.

[11] P. De, “Mint: A reconfigurable mobile muli-hop wireless network
testbed,” Ph.D. dissertation, Stony Brook University, 2007.

[12] J. Luck and J. Ioannidis, “Roomba Internals,” in
http://www.tla.org/roomba/1disass.html, January 2003.

[13] iRobot Corporation, “iRobot create programmable robot,
http://www.irobot.com/sp.cfm?pageid=305.”

[14] A. Raniwala, K. Gopalan, and T. cker Chiueh, “Centralized Channel
Assignment and Routing Algorithms for Multi-Channel Wireless Mesh
Networks,” in ACM SIGMOBILE Mobile Computing and Communica-
tions Review, April 2004.

[15] JFW Industries, Inc., “Fixed Attenuators
http://www.jfwindustries.com/Cat2000/FixedAttenuators-
Terminations.pdf.”

[16] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and
J. Lepreau, “Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed,” in Proceedings of IEEE INFOCOM 2006, April 2006.

[17] J. Tourrilhes, “Wireless Tools for Linux
http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html,”
May 2004.

[18] P. De, A. Raniwala, S. Sharma, and T. cker Chiueh, “Design consider-
ations for a multi-hop wireless network testbed,” IEEE Communication
Magazine, Oct 2005.

[19] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi, N. A. Syed, J. Modi,
and T. cker Chiueh, “Mint-m: An autonomous mobile wireless experi-
mentation platform,” In Proceedings of Mobisys, 2006.

[20] D. Raychaudhuri, “ORBIT: Open-Access Research Testbed for Next-
Generation Wireless Networks,” in As proposal submitted to NSF
Network Research Testbeds Program, May 2003.

[21] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the ORBIT
Radio Grid Testbed for Evaluation of Next-Generation Wireless Network
Protocols,” in Proc. of WCNC, Mar 2005.

[22] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc of OSDI’02,
Boston, MA, Dec. 2002, pp. 255–270.

[23] G. Judd and P. Steenkiste, “A software architecture for physical layer
wireless network emulation,” in Proceedings of the 1st international
workshop on Wireless network testbeds, experimental evaluation &
characterization. ACM New York, NY, USA, 2006, pp. 2–9.

[24] J. Hightower and G. Borriello, “Location systems for ubiquitous com-
puting,” Computer, vol. 34, no. 8, pp. 57–66, Aug 2001.

[25] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in MobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking.
New York, NY, USA: ACM, 2000, pp. 32–43.

[26] R. J. Orr, “SmartFloor, http://www.cc.gatech.edu/fce/smartfloor/.”
[27] J. Bohn, “Prototypical implementation of location-aware services based

on a middleware architecture for super-distributed rfid tag infrastruc-
tures,” Personal Ubiquitous Comput., vol. 12, no. 2, pp. 155–166, 2008.

[28] S. Hinske and M. Langheinrich, “An RFID-based Infrastructure for Au-
tomatically Determining the Position and Orientation of Game Objects
in Tabletop Games.”

[29] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “The NS-3 Project
http://www.nsnam.org/.”

