
Performance Overheads of Confidential Virtual
Machines

Mingjie Yan and Kartik Gopalan
Computer Science Department, Binghamton University

Binghamton, NY, USA - 13902-6000
{myan28,kartik}@binghamton.edu

Abstract—A Confidential Virtual Machine (CVM) is a vir-
tual machine (VM) whose memory is encrypted using trusted
hardware support to prevent unauthorized access to its contents,
including by the hypervisor. AMD Secure Encrypted Virtual-
ization (SEV) provides hardware support for CVMs on AMD
processors and has been used by several cloud operators to
provide trusted execution environments to cloud users. In this
paper, we examine the performance overheads of CVMs across
three generations of AMD SEV using a number of CPU, memory,
and I/O benchmarks. Our findings indicate that CPU-intensive
workloads running on a CVM do not experience significant
performance difference compared to a non-confidential VM.
However, we observe that some workloads that are sensitive
to cache/memory latency may experience a performance drop
of up to 2.5%. Pure memory-intensive workloads are observed
to experience up to 4.3% overhead. Disk I/O from CVMs
experiences a significant performance impact when using SEV,
with up to a 56% performance penalty. Network I/O, on the
other hand, experiences up to a 36% overhead. Workloads with
a mix of memory and I/O accesses experience an overhead of
up to 14%. Our work complements and extends the existing
understanding of the performance of this important and rapidly
evolving technology.

Index Terms—Confidential computing, virtual machines

I. INTRODUCTION

Confidential computing aims to protect sensitive customer
data, such as financial transactions, medical records, and intel-
lectual property, from unauthorized access on third-party cloud
platforms. An emerging approach to confidential computing is
to use processor-level hardware support to encrypt the memory
of a Confidential Virtual Machine (CVM), making it impos-
sible for the hypervisor or any host software to access the
CVM’s memory contents. While storage encryption can pro-
tect persistent data that is not in active use by an application,
hardware-based CVM encrypts data loaded in memory that is
actively in use, protecting it from other co-located VMs and
even from a malicious host. Some prominent technologies that
support CVMs include AMD Secure Encrypted Virtualization
(SEV) [1]–[3] and Intel Trust Domain Extensions (TDX) [4].

A CVM can strengthen confidentiality guarantees, but it
can also introduce significant overheads, because all data in
a CVM’s protected memory is encrypted by the memory
controller when written and decrypted when read. While this,
on its own, adds additional latency to memory accesses, more
serious performance impacts may arise from the need to
communicate some data with the hypervisor for I/O operations.

In this paper, we present a performance study of CVMs
that use the AMD SEV hardware, which is available on select
AMD processors and is supported by major hypervisors. At
the time of writing this paper, Intel TDX is not yet widely
available, and hence not considered.

AMD SEV works by generating a unique encryption key for
each CVM. This key is stored in an AMD Secure Processor
(AMD SP), a separate security co-processor based on ARM
Cortex A5, that is isolated from the main CPU. When a CVM
is started, AMD SP generates and stores unique keys to encrypt
all of the CVM’s protected memory. A high performance
Advanced Encryption Standard (AES) engine in the memory
controller performs inline encryption/decryption of data in
protected memory. This encryption is transparent to the CVM,
which runs unmodified OS and applications.

We investigate the performance of CVMs over three gener-
ations of AMD SEV VMs compared to General (unencrypted)
VMs, from various aspects including CPU, memory, I/O, and
real-world application performance. While there have been
other recent efforts [5]–[9] to evaluate the performance of
AMD SEV, they focused on either the first generation SEV
support or only on specific types of workloads. Our work
complements these prior works to provide a comprehensive
and more up-to-date understanding of this important and
rapidly evolving technology. Our key findings are as follows.

• CPU-intensive workloads in a CVM do not experience
significant performance difference compared to a Gen-
eral VM. However, workloads sensitive to cache/memory
latency may experience up to 2.5% performance loss.

• Memory-intensive workloads, such as the STREAM
benchmark, experience up to 4.5% overhead.

• Disk I/O from CVMs experiences the worst performance
impact, with up to 56% overhead, while network I/O
experiences up to 36% overhead.

• Mixed memory and I/O workloads, such as Redis bench-
mark, experience an overheads of up to 14%.

Next, we first provide a background of three generations of
AMD SEV hardware. Then we present the evaluation and
analysis of AMD SEV with CPU, memory, and I/O intensive
benchmarks, followed by related work and conclusions.

II. AMD SEV BACKGROUND

The AMD-V architecture [10], [11] provides hardware
support for VMs on AMD processors. AMD SEV extends
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AMD-V to provide an additional layer of strong cryptographic
isolation between VMs and the hypervisor. Here we provide
background on three generations of the AMD SEV technology.

A. First Generation SEV

The first generation SEV [1] tags code and data of a CVM
using a VM ASID (Address Space Identifier). The ASID is
used by the CPU to identify the VM to which the data belongs
and allows access only to the authorized VM. Additionally,
the AES engine encrypts the data outside the CPU with a
128-bit key. The SEV firmware in the AMD SP manages all
keys securely to prevent access by the untrusted host, besides
performing authentication and attestation. The AMD SP itself
is an ARM Cortex-A5 running with ARM TrustZone exten-
sion [12]. Figure 1 shows the memory encryption process.
When SEV is enabled, the CVM’s guest OS boot code sets a
C-bit (as in enCryption bit) in the guest page table entries for
pages that must be protected. The memory controller scans
the C-bit, the AMD SP provides the encryption key based
on each ASID, and the AES Engine performs the encryption.
Each encrypted memory region is pre-reserved.

B. SEV with Encrypted State (SEV-ES)

The second generation SEV-ES [2] protects guest VMs from
register state attacks by a malicious hypervisor. Such attacks
could involve reading guest register values, writing malicious
values, or replaying old state back into the VM, leading to data
leaks, control flow modification, and unintended behaviors in
the guest OS. To counter these attacks, SEV-ES encrypts the
guest register state that only the guest is permitted to modify.

The Virtual Machine Control Block (VMCB) is a data
structure utilized by a hypervisor to manage and control a VM.
It contains information about a VM’s virtual CPU (VCPU)
execution states, including its registers, memory mappings,
and other information. When a VM attempts a privileged
operation that a hypervisor must emulate then a VM Exit
occurs, meaning that the control of the CPU is transferred
from the VM to the hypervisor. To handle a VM Exit, the
hypervisor uses the VMCB to save/restore the VCPU state.

In General VMs, the VMCB directly stores the VCPU
register state. When SEV-ES is enabled, the VMCB is divided
into two sections: the “control area” and the “save area.”

Guest CPU Hypervisor

VMEXIT 
triggered

e.g. CPUID
Guest mode

to
Host mode

Send #VC 
back to guest

#VC handler 
copies state to 

GHCB

VMGEXIT

Save/encrypt guest 
VMCB

& Load hypervisor 
state

VMGEXIT 
handler

VMRUN

Save hypervisor 
state

&Load/decrypt 
guest VMCB

#VC handler 
modifies related 

state

IRET

VMEXIT 
handler

Host mode
to

Guest mode

Read VMCB error 
code, emulate 

CPUID, write result 
to VMCB

VMRUN

Read GHCB error 
code, emulate 

CPUID, write result 
to GHCB

SEV-ES VM

General VM

Fig. 2. CPUID VM Exit handling: SEV-ES CVM vs. General VM.

The hypervisor owns and manages the control area, which
contains information about the events that the hypervisor must
intercept, interrupt delivery information, and more. The VM
save area (VMSA), which used to store the VM register state,
is encrypted and integrity protected. However, accessing VM
registers for VM Exit handling becomes impossible when
registers are encrypted. Hence, SEV-ES allows the guest OS
to choose what state information to expose to the hypervisor.
This unencrypted shared memory, called the Guest-Hypervisor
Communication Block (GHCB), contains only the guest reg-
ister state required by the hypervisor.

SEV-ES classifies all VM Exits into two types: Automatic
Exits (AE) and Non-Automatic Exits (NAE). An AE either
does not require access to the guest register state (e.g., HLT
instruction) or is an asynchronous event (e.g., interrupts). AEs
are handled like standard VM Exits. NAEs require access to
the guest register state and generate a new exception, called
the “#VC exception” which has the same error code as the
corresponding standard VM Exit. An NAE is handled by a
“#VC handler” which runs in the guest OS, in contrast to
a standard VM Exit handler which runs in the hypervisor.
Figure 2 compares the execution flow in a General VM
and a SEV-ES VM when a guest issues a CPUID NAE
event. For a SEV-ES VM, the additional #VC handler in the
guest copies relevant state to GHCB and transfers control
to the hypervisor via a new VMGEXIT instruction, which
triggers the real hypervisor emulation. Thus, SEV-ES requires
additional load/save on GHCB and encryption/decryption on
VMCB, which is a tradeoff for increased confidentiality.

C. SEV with Secure Nested Paging (SEV-SNP)

The third generation SEV-SNP [3] adds a page table called
Reverse Map Table (RMP) on top of AMD-V Nested Page
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Tables (NPT) and SEV-ES. This addition is designed to
mitigate security threats [8], [13]–[16] such as replay attacks,
memory aliasing, memory remapping, and cache poisoning.
NPT accelerates the second-level address translation of Guest
Physical Address (GPA) to Host Physical Address (HPA) for
each VM, that was shown in Figure 1. The RMP enforces
integrity protection over second-level translation by adding
an additional look-up and check after the page table walk.
Figure 3 shows the memory layout when running SEV-SNP
VMs. Each SEV-SNP VM has its unique NPT and ASID.
The RMP table utilizes HPA as its index, and each RMP
entry contains the page state of each HPA page. A page
state is determined by the fields Assigned, Validated, ASID,
Immutable, GPA, and VMSA [17]. The RMP check operation
monitors the ownership of each page, which can belong to a
hypervisor, a specific VM, or the AMD SP, and allows only
the page owner to write to it. In Figure 3, when a user-space
process (native mode) attempts to write to HPA 15000h, which
belongs to Guest B, the RMP check will deny this access
because the RMP entry at 15000h has an ASID of 2, exclusive
to Guest B. The failure of the RMP check triggers a page
fault. For an SEV-SNP VM, the RMP check is more complex.
Similar to the native mode, the HVA is initially translated into
an HPA, which then directly accesses the page. If Guest A
tries to read page GVA 2000h, it first translates GVA to GPA
1000h and checks the NPT to translate GPA 1000h to HPA
3000h. The RMP entry 3000h is then checked as to whether
the page belongs to a VM with ASID of 1, whether the current
page status complies with a SEV-SNP VM definition, and
importantly, whether the GPA value matches the requested
page. If any of these checks fail, the VM is denied access
and a page fault is triggered. In this example, the RMP check
passes, so Guest A continues with its memory access.

III. PERFORMANCE EVALUATION OF CVMS ON SEV

We now explore the performance differences among CVMs
on three generations of AMD SEV and General VMs.

Table I details the configuration of the testbed machines.
The main experimental machine (hereafter called the host) is
a bare-metal server, equipped with two 64-core AMD EPYC
Milan 7763 processors, 256GB RAM, and a 500GB SATA

TABLE I
TESTBED CONFIGURATION

Items Verison
Host BIOS DELL PowerEdge R6525 v2.11.3
Linux distribution Ubuntu Server 22.04.2 LTS
Host & Guest Kernel Linux 5.19-rc6 v4 (SEV dev branch) [18]
AMD SEV Firmware 1.53 build:5 for EPYC 7xx3 (Milan)
QEMU QEMU-6.1.50-snp-v3 (SEV dev branch) [19]
OVMF BIOS edk2-stable202302 [20]
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Fig. 4. AMD EPYC 7763*2 CPU topology diagram

SSD. In addition, one client machine with the same hard-
ware configuration is used in network-oriented benchmarks
to generate requests to the host. A successful initiation of a
CVM requires the collaborative efforts of three components:
the Linux kernel (with KVM features), QEMU (a VM manager
process), and the guest BIOS. The host, CVMs, and client
machines all run standard Ubuntu distributions with Linux
kernel 5.19-rc6 v4 [18], which is maintained by AMD. The
QEMU branch [19], also maintained by AMD, adds support
for memory encryption for a SEV VM. SEV memory encryp-
tion is dependent on the setting of the C-bit. As the C-bit
is located in the higher bit of the address, support for long-
mode is necessary in the BIOS. However, SeaBIOS, which is
commonly used by QEMU, doesn’t support long mode. Hence
AMD and TianCore have collaborated to add SEV features
to the Open Virtual Machine Firmware (OVMF) BIOS [20],
making it aware of all three generations of SEV CVMs. Our
host supports all three generations of AMD SEV, which can
be enabled as needed via QEMU configurations [21].

A. NUMA Setting and VM Size

Figure 4 generated by the lstopo [22] tool, shows the CPU
topology of the testbed machine. Each “Package” refers to
each CPU socket. AMD EPYC 7763 has multiple dies in
a multi-chip module design. Each CPU is constructed of
eight Core Complex Dies (CCDs) and one I/O die. The I/O
die controls all I/O operations, including its eight-channel
memory controller. Each CCD contains an eight-core CPU
with its own L1-L3 cache and a quick connection to the I/O
die. Memory access between these 128 cores have different
latencies due to Non-Uniform Memory Access (NUMA). For
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instance, CPU0 (socket0, CCD0) has a NUMA distance [23]
of 10 to CPU7 (same CCD as CPU0, in-node access no extra
latency), 12 to CPU63 (socket0, CCD7, cross-node access:
1.2 times latency), and 32 to CPU64 (socket1, CCD0, cross-
socket access: 3.2 times latency). Due to this multi-chip
module design, applications on AMD EPYC should be mapped
carefully to CPUs to prevent I/O or memory bottlenecks.

TABLE II
VM SIZE

VM size Configuration
Small 2 VCPU, 4GB memory, pin on CCD8
Medium 8 VCPU, 14GB memory, pin on CCD8
Large 112 VCPU, 120GB memory, pin on CCD8-14

Table II shows three VM configurations used in our ex-
periments – Small, Medium and Large – and their relation
to the AMD EPYC 7763 CPU topology. As our goal is to
observe the impact of SEV-related settings on various aspects
of the VM, we strive to minimize the influence of host settings
unrelated to SEV on the VM. To mitigate the aforementioned
NUMA latency, we have configured Small and Medium VMs
to confine the entire QEMU process within a single CCD,
whereas Large VMs are confined to a single socket. The
pinning processes begins at CCD8 to prevent performance
disparities among CCDs. We use the “taskset” command to
establish the CPU affinity for the QEMU process, thereby
effectively disabling the NUMA balancing feature [24] for
automatically shifting memory to nodes that frequently access
it. This configuration ensures that there is no cross-node
memory access for Small or Medium VMs, and no cross-
socket memory access for Large VMs.

B. VM Boot Time and Host Memory Usage

TABLE III
BOOT TIME

VM size General SEV SEV-ES SEV-SNP
Small 7.79s 10.01s 14.91s 15.97s
Medium 7.76s 10.53s 14.50s 15.52s
Large 12.90s 19.76s 25.87s 30.26s

Boot time is critical for VM responsiveness, while memory
usage determines the number of deployable VMs. However,

the boot process for a SEV VM differs from that of a General
VM, particularly in how memory regions are configured during
the initialization stage. Figure 5 illustrates the SEV VM boot
procedure, with steps 3, 4, 5, and 6 diverging from a General
VM. After QEMU loads the OVMF BIOS to guest memory
(step 2), AMD SP generates a new encryption key only for this
SEV VM and encrypts the entire memory region assigned to it
(step 3). Once encryption is complete, the AMD SP calculates
a hash value of this encrypted memory region and sends it to
the guest owner (step 4, 5). To mitigate the risk of malicious
firmware injection, the guest owner, who knows the content of
the given OVMF, compares the hash value. Only if the hash
values matches does the guest owner authorize the VM to
start (step 6), establishing trust between the VM and the guest
owner. At this point, the loaded OVMF BIOS initiates the
boot process (step 7). Since the OVMF BIOS is SEV aware,
it executes various boot steps based on SEV settings.

Table III compares the VM boot times under different
SEV settings. Boot time is defined as the interval from the
issuance of the QEMU command by the host to the timestamp
of a UDP packet sent from the guest OS, just after the
system daemon brings all services online, as captured by the
tcpdump utility on the host. Compared to a General VM,
SEV introduces an additional boot time of less than 3 seconds
for Small and Medium CVMs and around 7 seconds for Large
CVMs. SEV-ES adds an additional 4 to 5 seconds compared
to an SEV VM. SEV-SNP adds 1 more second to Small and
Medium CVMs, and 5 seconds to Large CVMs compared to
SEV-ES VMs. This leads to an increase in boot time to 15
seconds on Small and Medium CVMs and 30 seconds on a
Large CVM compared to a General VM. The primary reason
for the significant additional boot time for SEV-SNP is the
construction of the RMP table during initialization.

We now compare the memory footprint of a SEV VM
compared to a General VM. We use an identical image –
an idle Ubuntu server with only the SSH service running.
We measure the entire memory occupied by QEMU from
/proc/PID/status, which includes the memory used by the VM.
Since SEV is security oriented, a CVM’s memory regions are
reserved and encrypted in advance on the host regardless of
the CVM’s actual memory usage. In contrast, for a General
VM, memory is allocated only when needed. For the General
VM case, a Small VM occupies 1.28GB, a Medium VM
occupies 1.49GB, and a Large VM occupies about 4GB.
The corresponding values for the SEV VM case are 4.03GB,
14.05GB, and 120.08GB. Furthermore, memory encryption
prevents the use of traditional de-duplication techniques, such
as Kernel Samepage Merging (KSM) to reduce this extremely
high memory usage of CVMs. Consequently, CVMs are likely
to yield lower consolidation efficiency than General VMs.

C. Benchmark Performance Measurements

The benchmark tools employed were sourced either from
Ubuntu’s default package sources or were compiled using gcc
11 with “-o3” option. We did not use any other compiler-
level optimizations [25] [26] since our focus is on investigating
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the general performance differences between SEV VMs and
General VMs. The overhead is calculated using by first run-
ning the same benchmark tool with the exact same settings on
a General VM and on a CVM to get the raw performance
metrics (PGVM and PCVM ), and then using the formula
Overhead = PCV M−PGV M

PGV M
∗ 100% to calculate the overhead

of the given benchmark under the same VM size. The final
overhead is the average of five runs of a given benchmark.

D. CPU Performance
We used Sysbench and the 7-Zip compression benchmarks

to compare the performance of CPU-intensive workloads on
General and SEV VMs. Sysbench [27] is an open-source
multi-threaded benchmark. When operated under a CPU work-
load, Sysbench performs prime number validation using the
conventional method of dividing the number by all integers
from 2 up to the square root of the number itself. We set the
option to use the maximum available threads inside the VM
and let the benchmark continue to run for 30 seconds. Figure 6
compares the results of “average executed events per second”
across different SEV generations on Medium and Large VMs.
Sysbench experiences less than 1% overhead in the worst case
(SEV-SNP on Large VM) compared to a General VM.

7-Zip compression benchmark [28] employs the LZMA
compression algorithm to continuously measure executed in-
structions per second. Factors such as cache latency, memory
latency, and out-of-order execution hold more significance in
this benchmark. The benchmark is set to use the maximum
threads available within the VM, and the LZMA dictionary
size remains at the default 32MB. Figure 6 shows the bench-
mark results for different SEV generations on Medium and
Large VMs. Due to memory encryption, cache/memory access
latency increases, which causes this benchmark to reflect
an overhead of up to 1.5% on SEV, and up to 2.5% on
SEV-ES and SEV-SNP. Hence, while a SEV VM does not
experience significant CPU overheads compared to a General
VM, there is a small discernible impact on workloads sensitive
to cache/memory latency.

E. Memory performance
Since SEV fundamentally aims at protecting data during

processing, it sits in the critical performance path for memory-
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intensive workloads. We use two memory-intensive bench-
marks – STREAM and Redis – to ascertain the difference
in performance between a General VM and a SEV VM.

The STREAM [29] benchmark is a synthetic benchmark to
measure the sustainable main memory bandwidth for simple
vector kernels. Each vector operation presents a different
cache/memory access pattern. We configured OpenMP [30]
to enable parallelized execution of STREAM and used the
default setting of the problem size. Figure 7 compares the
overhead of SEV VMs to General VMs. For a Medium VM,
all three types of SEV settings bring a similar overhead of
up to 4.3% on Scale, Triad, and Add sub-benchmarks. For
a Large VM, the performance overhead reduces because the
overall performance of a Large VM is about three times that
of a Medium VM. Thus, the performance loss appears smaller
due to a larger performance base.

Redis [31] is an in-memory, key-value data store that can
be used as a database, cache, message broker, and queue.
Redis Benchmark is a Redis built-in tool that measures the
performance of a given Redis server by emulating multiple
database clients that continuously send commands to the
server. We ran the Redis clients on another machine connected
to the host machine over a 10Gbps network link. We measured
“GET” and “SET” commands representing memory write and
read operations. We used 8-byte data size of each “SET/GET”
request. The total of 50 million “GET” requests and 20
million “SET” requests were used with the pipeline set to
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24. The Redis server inside the VM also enabled multi-
threading for better overall performance. Redis Benchmark
is reports performance as “executed requests per second.”
Figure 8 shows the Redis Benchmark overhead on a Small
VM. SEV alone resulted in about a 9% and 8% performance
loss for write and read operations, respectively. SEV-ES and
SEV-SNP further exacerbated the performance drop, leading
to up to a 14% loss on write operations and a 12% loss
on read operations. Since the Redis benchmark generates a
combination of memory and network I/O workloads, we see
a correspondingly larger performance overhead compared to
the STREAM benchmark, which is purely memory-intensive.
Next, we examine the I/O overheads of CVM in more detail.

F. I/O Performance

We measured the disk and network throughput using Flex-
ible I/O tester (FIO) [32] and iPerf [33] benchmarks, respec-
tively. The virtual disk is an unencrypted, uncompressed disk
in qcow2 format. While an encrypted disk would ordinarily be
utilized to enhance a CVM’s security, we chose an unencrypted
disk to examine the performance impact of a pure SEV
setup. Currently, SEV VM’s I/O relies on IOMMU DMA
and employs a shared memory segment between the VM
and the hypervisor, known as the Software I/O Translation
Buffer (SWIOTLB). For optimal performance, we used para-
virtualized virtio-scsi-pci and virtio-net-pci as QEMU back-
ends with IOMMU DMA enabled. The size of the SWIOTLB
was set to 256MB for Small CVM and 1024MB for Medium
CVMs, to avoid unexpected VM crashes due to a lack of
available SWIOTLB under I/O-intensive workloads.

FIO reports disk I/O Operations per second (IOPS). We
set an I/O depth of 128, block size of 4KB, non-buffered
I/O, a mixed workload comprising 75% random read and
25% random write, and let the benchmark continue to run
for 30 seconds. For a General Medium VM, FIO reports
read throughput of 143.6K IOPS and write throughput of
47.9K IOPS. Using these General VM values as baseline,
Figure 9 shows the FIO benchmark overhead of different SEV
generations on a Medium CVM. SEV-ES demonstrates the
worst performance of all tested setups, with a 56% loss in disk
read and write performance, primarily due to the addition of
#VC handler and GHCB communication.
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Fig. 10. NPB benchmark overhead

iPerf measures the maximum achievable bandwidth via TCP
or UDP connections from a server to a client. iPerf server ran
inside either a General VM or a CVM, and the iPerf client
ran on another machine linked with a 10Gbps connection to
the host server machine. The throughput reported by iPerf is
the same across different SEV settings and the General VM,
with TCP having 9.4 Gbps and UDP having 2.3 Gbps. As
the 10Gbps physical bandwidth limit became the bottleneck
of this experiment, we turned to use the local loop-back
interface on the host side. We created a Linux bridge device
for local switching, and a TAP device connects the bridge
device. We allocated a dedicated subnet containing only the
host local bridge and VM. This configuration increased the
throughput of iPerf for the General VM to 65.13 Gbps for
TCP and 5.36 Gbps for UDP. Using these values for General
VM as the baseline, Figure 9 shows the iPerf overhead from a
Medium VM to the Host through the host loop-back network
for different SEV settings. All three SEV settings exhibit
about a 36% degradation in TCP throughput, primarily due
to the SWIOTLB implementation mentioned earlier. UDP
throughput, on the other hand, is mainly limited by the network
stack and single-core CPU performance, with SEV settings
causing only a 3%-4% drop. The performance loss in I/O
is considerable and largely attributable to the current design
limitations of SEV that force I/O operations to rely on different
forms of shared memory between the CVM and hypervisor.

G. High Performance Computing (HPC) Workload

The NAS Parallel Benchmarks (NPB) [34] is a collection of
benchmarks designed to measure the performance of parallel
supercomputers, reflecting realistic and complex computing
scenarios. Similar to STREAM, we utilized OpenMP to es-
tablish the parallelized benchmark environment within a VM.
These benchmarks primarily originate from the application of
Computational Fluid Dynamics. Of the nineteen benchmarks
in total, we picked six benchmarks related to pure compu-
tation, data movement, and parallel I/O-related benchmark.
Figure 10 shows the performance overhead of SEV VMs
compared to a General VM. We choose the predefined level
D as the problem size for each benchmark, representing large
test problems. Each benchmark takes approximately 20 to



45 minutes to complete in our Large VM. The performance
impact from SEV varies based on the different workloads.
However, SEV-SNP brings a greater performance impact com-
pared to SEV and SEV-ES on all benchmarks due to its
additional RMP check operation on every memory access.
The UA benchmark, which relies on parallel I/O, reveals that
SEV-ES and SEV-SNP have a significantly adverse impact
on I/O-intensive workloads, primarily due to the design of
SWIOTLB. It is important to note that the NPB Benchmark
exhibits a large difference when NUMA balancing is enabled
without pinning the VCPU, and we have observed up to
more then 50% overhead on some benchmarks across different
SEV settings compared to a General VM. This substantial
difference is the primary reason we decided to set VCPU
affinity, disable NUMA balancing, and match the VM to the
host CPU topology.

H. Other Limitation of SEV

Despite SEV’s important functionality of adding confiden-
tiality to VMs, it also reduces some of the capabilities of a
VM. For instance, a system can only support a certain number
of SEV VMs simultaneously – 512 on our testbed EPYC 7003
platform. PCI pass-through, a form of direct I/O access for
VMs, is also more complicated to support, if not impossible,
at present. Furthermore, the most significant drawback is
the lack of VM checkpointing and live migration support.
Checkpointing and live migration are relatively straightforward
with a General VM, mainly because the hypervisor maintains
full control of the VM. Currently, two solutions are being
explored to address this issue for CVMs. The first solution is
an expensive approach [35] that allows the hypervisor to send
requests to decrypt and re-encrypt pages one by one using a
newly generated transfer key specifically for the checkpointing
or live migration operation. This approach heavily relies on the
AES engine’s throughput. The second solution [36] involves
adding helper threads inside the CVM, but hidden from the
Guest OS, to assist in setting up the security transition tunnel
and tracking dirty memory by setting pages as read-only.
This approach reduces the encryption/decryption overhead as
the helper threads can directly read the plain-text content of
a page since they operate inside the CVM. At the time of
writing this paper, we were unable to successfully reproduce
and evaluate any of the above publicly available live migra-
tion/checkpointing codes for CVMs, but we look forward to
doing so once stable prototypes are made available.

IV. RELATED WORK

Prior research efforts on performance analysis of AMD SEV
have been restricted to either the first generation SEV or only
to specific types of workloads. Our work complements them to
provide a comprehensive and more up-to-date understanding
of this important and rapidly evolving area.

Akram et. al. [5] first compared the performance of scientific
workloads between first generation SEV VMs and SGX [37].
They attributed the NPB performance overhead from an SEV

VM mainly to the host side’s default NUMA memory allo-
cation policy. We reached a similar conclusion in our tests.
Additionally, we tried to eliminate the memory allocation
problem by disabling NUMA balancing, setting a reasonable
size for the VM, and pinning VCPUs. We found that the
performance degradation on the NPB benchmark still exists.

Göttel et. al. [6] compared the memory bandwidth, latency,
and system energy cost of the first generation SEV and SGX
using a variety of micro and macro benchmarks, including
Redis server LOAD and SCAN operations. We used Redis
server SET and GET operations as one of our benchmarks on
memory, finding higher overheads compared to their results in
all three generations of SEV VMs. Mofrad et.al. [7] compared
SGX enclave and first generation SEV on features, security
level, and CPU performance overhead. They used quick-
sort, MD5, and floating-point workloads to measure the pure
computation overhead. Similar to our results, they found that
SEV did not introduce much overhead on CPU performance.
Li et. al. [8] discussed the performance overheads and security
issues in first generation SEV VMs. In this paper, we were
able to reproduce the disk and network I/O overhead results
with different benchmark tools and extend the discussion
to all three generations of SEV implementation. Bifrost [9]
is a para-virtualized I/O design that aims to eliminate the
network I/O overhead in SEV-ES VMs. The authors found
that inefficiencies in bounce buffer processing as well as
VM Exit events cause the CVM’s VCPUs to lose more than
50% of CPU cycles under I/O-intensive workloads. They
proposed several optimizations to improve CVM network I/O
performance significantly, even surpassing a General VM.

Some efforts have also demonstrated new functionalities
using AMD SEV. Brasser et. al. [38] implemented a prototype
of a confidential container using first generation SEV. They
focused on container use cases with Nginx, Apache, and Redis
performance. Pecholt et. al. [39] implemented a confidential
container prototype with live migration support. It is based
on the first-generation SEV technology and is modeled on the
first approach mentioned in Section III-H, incorporating the
necessary remote authentication and encrypted data transfer.
As per reported numbers, it took more than 45 minutes to
migrate a 4GB container due to performance limitations of the
AMD SP, which is extremely slow compared to live migration
of a General VM of similar size. vSGX [40] emulates an
Intel SGX enclave on top of the AMD SEV-ES platform
to demonstrate the flexibility of the whole VM encryption
approach to support other runtimes. More use cases are likely
to emerge as the technology matures.

AMD is actively engaged in endeavors to alleviate the
performance degradation associated with SEV. In March 2023,
they proposed a new DMA design called Trusted I/O for
Secure Encrypted Virtualization (SEV-TIO) [41], to rectify the
inherent flaws of the original design. Concurrently, they are
developing the Secure VM Service Module (SVSM) [42], a
dedicated guest communication interface specifically tailored
for SEV-SNP VM guests, providing enhanced security control
and greater adaptability within a CVM.



V. CONCLUSION

CVM fills a critical gap in confidential computing by
providing transparent hardware support for encrypted VMs.
Three generations of AMD SEV have progressively addressed
this problem by adding more hardware abstraction layers to
provide memory encryption, register state encryption, and page
table integrity protection. However, as shown in this paper,
these new abstraction layers have emerged as new performance
bottlenecks, especially for I/O and memory-intensive work-
loads. Despite these overheads, CVMs continue to draw strong
interest from industry and academia due to the very tangible
problem that they solve. Hence, addressing performance issues
in CVMs will remain an important priority in the future.
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