
ContainerVisor: Customized Control of Container
Resources

Tianlin Li
Computer Science

St. Mary’s University
San Antonio, TX, USA

tli2@stmarytx.edu

Kartik Gopalan
Computer Science

Binghamton University
Binghamton, NY, USA
kartik@binghamton.edu

Ping Yang
Computer Science

Binghamton University
Binghamton, NY, USA
pyang@binghamton.edu

Abstract—Cloud platforms are increasingly using containers
for lightweight virtualization. Unlike full system virtual machines
(VMs) that each runs its own operating system, containers
share a stateful operating system to reduce their memory foot-
print and execution overheads. However, mainstream operating
systems are currently limited in their ability to customize a
container’s memory management, since they lack the necessary
abstractions and mechanisms to accurately track and isolate a
container’s memory footprint. We propose a new abstraction,
called Container-Level Address Space (CLAS), that provides a
unified view of a container’s memory across all of its constituent
processes. We present the design of ContainerVisor, a per-
container resource management system that leverages CLAS to
provide customized memory management services. We describe
a ContainerVisor prototype on Linux for running unmodified
applications and demonstrate three proof-of-concept customized
services, namely process-level memory limits and reservations,
container-specific page replacement policies, and privacy-aware
memory de-allocation. Our evaluations show that ContainerVisor
can provide these customized services within reasonable over-
heads.

Index Terms—Containers, Operating System, Virtualization,
Cloud Infrastructure

I. INTRODUCTION

Containers [1]–[3] are a lightweight abstraction for isolating
a group of correlated processes by limiting the use and
addressability of various system resources. A namespace refers
to the scope of each addressable system resource, such as
file systems, process identifiers (IDs), inter-process commu-
nication (IPC), network endpoints, and user IDs. For instance,
containers in Linux rely on Linux Namespaces [4], [5] to limit
resource addressability and Control Groups (Cgroups) [6], [7]
to limit resource usage.

All containers in a machine (whether physical or virtual)
share a common operating system (OS or kernel), unlike full
system virtual machines (VMs or guests) [8]–[10] that each
runs its own OS. Generally, multiple containers sharing a
common OS consume less system resources and achieve better
performance than multiple VMs. Hence containers can be used
to run more applications within a single machine.

Despite the above benefits, containers lack some important
features provided by full system VMs. First, because contain-
ers share a common OS, container-based virtualization does
not provide strong isolation. Today’s containers provide only

namespace isolation and rely on the shared OS to allocate
and schedule their resources. For instance, a shared OS may
implement uniform memory management policies for all of its
containers irrespective of individual application requirements.
Also, a security breach in one container that compromises the
shared OS also compromises other co-located containers.

Secondly, the ability to easily track an application’s memory
footprint is necessary for providing a number of services
to applications such as guaranteeing memory reservations,
enforcing memory usage limits, scrubbing or encrypting confi-
dential data, and performing live migration and checkpointing.
A system VM’s memory footprint can be conveniently tracked
and managed by the hypervisor via a single guest-physical
address space, i.e. the guest’s virtualized view of its physical
memory. Typically, a second-level page table [11], such as
Intel’s extended page table (EPT) or AMD’s nested page
table (NPT), captures a VM’s guest-physical-to-physical page
mappings.

In contrast, there is no container-level equivalent of a VM’s
guest-physical address space that can capture a unified view of
a container’s entire memory footprint. A container’s memory
contents are spread across multiple virtual address spaces of
its constituent processes. Each process is assigned its own
separate page table by the OS to track its virtual-to-physical
address mappings. This makes it difficult for container-level
services to easily and accurately track and manage a con-
tainer’s memory across its multiple processes. For instance,
while Linux containers use Cgroups to account and limit
a container’s memory usage, the underlying implementation
requires gathering process-specific information from disparate
locations in OS memory, such as multiple process’ page tables
and system-wide bookkeeping data structures. The memory
usage policies enforced by Cgroups are inflexible and uni-
form across all containers; they do not allow room for cus-
tomized memory reservation policies for individual containers.
Similarly, container checkpointing and migration mechanisms
must painstakingly gather a container’s page mappings from
multiple process-level page tables.

In this paper, we propose ContainerVisor, a container re-
source management system to ease the tracking and manage-
ment of a container’s memory. A traditional OS uses page
tables to directly map the virtual address space of each process

to its physical memory. In contrast, a ContainerVisor maps
the virtual address space of all processes in a container to a
single Container-Level Address Space (or CLAS), which is
then mapped to physical memory. This new CLAS abstraction
provides a convenient single point to track the entire memory
footprint of a container and customize its management.

We present the design and implementation of a ContainerVi-
sor prototype in Linux and demonstrate the following proof-
of-concept customized services enabled by CLAS.
• Per-process memory reservations: ContainerVisor can

be used to provide memory reservation (i.e. guaranteed
memory availability) for individual processes within a
container, besides enforcing memory quotas (maximum
limit) as supported by traditional Cgroups.

• Scrubbing confidential memory after deallocation:
Existing OS mechanisms do not scrub (zero out) deal-
located memory pages after a process terminates or
otherwise deallocates memory. This leaves the possibility
that deallocated pages having confidential data may be
reused by other untrusted processes. However, system-
wide scrubbing of all deallocated pages can be expensive.
ContainerVisor provides a mechanism to scrub deallo-
cated memory pages a container.

• Per-container page replacement policies: A traditional
OS typically implements a system-wide page swapping
policy that may not discriminate between the memory
requirements of different containers. ContainerVisor en-
ables one to customize the page replacement policy for
each container’s application needs over dedicated swap
devices.

The rest of the paper is organized as follows. Section II
presents ContainerVisor design and the new CLAS abstraction.
Section III describes customized services supported by Con-
tainerVisor. Section IV describes the implementation details
of a ContainerVisor prototype on Linux. Section V presents
experimental evaluation of our prototype’s performance and
effectiveness. Section VI compares ContainerVisor with re-
lated work and Section VII concludes the paper.

II. DESIGN OF CONTAINERVISOR

ContainerVisor is a per-container agent that provides cus-
tomized memory management services to a container. Figure 1
shows the high-level architecture. A ContainerVisor performs
two primary functions based on which customized services are
implemented. First is to construct and maintain a Container-
Level Address Space (CLAS). Second is to intercept and han-
dle memory-related events of interest generated by individual
processes. Below, we discuss these two functions.

A. Container-Level Address Space (CLAS)

Each container is associated with a CLAS, which is a
virtualized address space representation of the entire memory
used by all processes in a container. CLAS enables a Contain-
erVisor to control the memory usage of individual processes
according to container-specific policies. Figure 2 compares

Process VA

Container Level Address Space (CLAS)

Process VA Process VA

Container

Event
Relay

...

ContainerVisor

PA Host OS

Event Handler

VA-to-CLA VA-to-CLA VA-to-CLA

CLA-to-PFN Default PTPage TablePA

Fig. 1. High-level architecture of ContainerVisor.

Process VA PA

(a) Single process

PAProcess VA

Container

(b) Traditional container

PAProcess VA

Container

CLAS

(c) CLAS-based container

VA-to-
CLAProcess VA

CLA-to-
PFN

Default PT

PTProcess VA

PT

CLA

PT

PA

Fig. 2. Memory translation for a single process, a traditional container, and
a CLAS-based container. VA: Virtual Address. PA: Physical Address. CLA:
Container-Level Address. PT: Page Table.

the memory translation mechanism for a single process, a
traditional container, and a CLAS-based container.

For a single process, shown in Figure 2(a), the OS constructs
and maintains a page table to translate virtual addresses (VA)
to the corresponding physical addresses (PA). The OS uses
this page table to manage the memory pages allocated to an
individual process whereas the hardware memory management
unit (MMU) uses this page table for address translation during
execution time without involving the OS.

For a traditional container, shown in Figure 2(b), tracking
its memory footprint across its multiple constituent processes
is more complicated. Unlike for system VMs, the OS and the
MMU hardware do not provide a second-level page table [11]
for containers. Instead the OS maintains a traditional page
table for each process in a container. Hence, to track and man-
age a container’s memory, the OS must painstakingly gather
mapping information spread across multiple page tables. The

drawback of this approach is that the container-wide memory
usage may not be tracked synchronously and accurately.

As shown in Figure 2(c), ContainerVisor addresses this lim-
itation by constructing a CLAS – a software-defined container-
wide address space. Conceptually, a virtual address of a
process in a container maps to a container-level address (CLA),
which is then mapped to a physical address. In practice,
however, the two-level address translation via CLAS is not
recognized by either the OS or the MMU hardware. Hence
the ContainerVisor intercepts memory allocation events (page
faults) generated by its processes and constructs the VA-to-
CLA and CLA-to-PA mappings. The resulting VA-to-PA map-
ping is then populated in the OS-maintained single-level page
table of the faulting process and used by the MMU hardware
for address translation. Thus CLAS provides a convenient
single point for easy tracking and customized management
of all memory pages used within a container. We next discuss
the details of memory-event interception and processing by a
ContainerVisor.

B. Event Interception and Handling

ContainerVisor intercepts all memory-related events trig-
gered by its processes such as page allocation, deallocation,
and sharing, to accurately track the container’s memory in the
CLAS. An event relay in the OS intercepts and synchronously
redirects these events to an event handler in user space. The
event handler processes each event by updating the CLAS
mapping tables and returns its response back to the OS, which
completes updating the traditional process page table. Below,
we discuss the details of individual memory events.

Page allocation event: A page allocation event occurs when
a process tries to access a valid virtual address in a page that
is not currently mapped by the OS to a physical page, either
because this is the first access to the page by the process or if
a previously swapped out page is accessed again. Upon inter-
cepting a page allocation event, a ContainerVisor updates the
corresponding VA-to-CLA and CLA-to-PA mappings, called
simply the CLAS mappings.

Process creation and copy-on-write events: When a new
process (child) is created by forking an existing process
(parent), the OS populates the initial page table of the child by
copying the memory mappings from the parent’s page table
and marks all page table entries as copy-on-write. A Contain-
erVisor intercepts process creation events in its container to
construct the initial CLAS mappings for the child that reflect
copy-on-write sharing with the parent.

The ContainerVisor also intercepts write fault events which
are triggered when a child or parent subsequently writes to a
page that is marked copy-on-write. The ContainerVisor then
updates CLAS mappings to reflect the new page allocation
followed by copy-on-write processing by the OS.

Page deallocation and replacement events: When a pro-
cess terminates, its memory pages are deallocated by the OS.
A page is also deallocated when an active process explicitly
unmaps a page from its memory, such as when the malloc
library frees memory greater than 128KB. The ContainerVisor

intercepts all process termination and memory unmap events
from processes in its container and deletes all CLAS mappings
of the affected pages.

ContainerVisor also optionally maintains a per-container
swap device. When a memory page must be evicted due
to memory pressure, the ContainerVisor evicts the page to
the container’s swap device and updates the page’s CLAS
mappings to reflect its location on the swap device.

The ContainerVisor also retrieves an evicted page from swap
device as a result of a page fault (discussed earlier) or during
pre-fetching. In either case, the CLAS mapping of the retrieved
page are updated to map to the newly allocated physical page.

III. CUSTOMIZED SERVICES

ContainerVisor provides customized memory management
services for each container that complement or augment the
system-wide OS-level mechanisms. Below, we present three
such use cases of ContainerVisor.

Per-process memory usage limits and reservation: A
ContainerVisor tracks up-to-date memory usage of each pro-
cess running inside a container. Thus, it can enforce memory
usage limits, not just for an entire container, but also for
individual processes within a container. In addition, Con-
tainerVisor can also reserve memory for important processes
within a container, i.e. guarantee minimum availability as
opposed to limit maximum usage. This level of intra-container
memory allocation granularity differs from traditional Linux
Cgroups mechanism which can limit maximum memory usage
but not to guarantee minimum availability.

Privacy-aware memory scrubbing: By tracking memory
pages of processes within a container, a ContainerVisor can
provide container-specific services not typically provided by
a traditional OS. For instance, for processes that handle
confidential data such as credit card numbers, passwords,
and other confidential information, ContainerVisor can scrub
(or zero out) deallocated pages that contain such data. Such
services can help to limit the lifetime of confidential data for
applications running within containers. In addition, a Contain-
erVisor could potentially use CLAS to perform checkpointing
to save a container’s execution state, or live migration for
system maintenance and load balancing.

Customized page replacement policies: A traditional OS
applies uniform page replacement policies for all contain-
ers and processes using a common swap device. Such an
application-agnostic swapping mechanism can adversely affect
critical applications running within containers. ContainerVisor
allows for customized page replacement policies for different
containers over dedicated swap devices. For example, one
ContainerVisor may implement the traditional least recently
used (LRU) page replacement policy while another may pri-
oritize evicting pages of less important processes in a container
over its important ones.

IV. IMPLEMENTATION

Figure 3 shows the implementation details of ContainerVi-
sor. ContainerVisor consists of a user-level component called

ContainerVisor
Kernel Module

User
Space

Kernel
Space

Kernel

kfifo

ioctl read

Container
CMP

...

Processes

Helper
Hooks

page
fault

CLA-to-PFN

CLAS

CLA

VA-to-
CLA

PA

Fig. 3. Components of ContainerVisor.

the container management process (CMP), a kernel module,
and several helper hooks in the kernel code. Each container is
associated with a CMP, which virtualizes the memory address
space of a container. CMP received memory-related events
from the OS, and updates CLAS mappings. CMP was im-
plemented in the user-level to enable ContainerVisor to more
easily implement different memory management policies.

We use an event redirection mechanism to track memory
pages of a container. The helper hooks in the kernel monitor
page faults and other events that need CMP’s response. If such
an event occurs, the helper hooks redirect the event to the
CMP. Once the event is handled by the CMP, the control
is returned to the kernel context of the process on which
the event occurs. In our current implementation, we use the
kernel’s built-in data structure kfifo (an FIFO buffer) and a
kernel module to communicate between the kernel and the
CMP. When a page fault occurs, the helper hooks in the kernel
write messages into a kfifo buffer. The CMP then uses the
read operation of the kernel module to read messages from the
kfifo buffer. The message contains the faulted address, the
address of a local variable for storing the CLA value from
CMP, the ID of the faulted process, and a flag indicating
the event type. The CMP also uses ioctls to send event
responses from CMP to the kernel or invoke functions in
kernel space.

A. Event Handling

A CMP intercepts and processes the following memory-
related events that are generated by processes within its
associated container.

Page allocation event: ContainerVisor uses the page fault
handler to track newly allocated memory pages. Memory
pages of an application are allocated through page faults. In
traditional Linux operating systems, when a running process
needs to access a memory page which is not yet allocated, a
page fault occurs and the page fault handler in the kernel is

triggered to handle the page fault. The page fault handler then
fills the page table entry (PTE) with the page frame number
(PFN) of the allocated physical page. For every faulted virtual
address vap received by CMP, if CMP already has a page table
entry for vap, then CMP retrieves the corresponding CLA
from the page table. Otherwise, CMP allocates a new CLA
cla′, and adds record (pid, vap, cla

′) to CMP’s page table,
where pid is the ID of the faulted process. Meanwhile, the
process waits in the kernel space until CMP passes cla′ to
the kernel. Next, CMP uses the ioctl function to trap into the
kernel space to pass cla′ to the process’ kernel context, and
the page fault handler continues to run in the kernel. Once
the kernel allocates a physical page and fills the PTE of a
faulted address in the kernel’s page table, the helper hook
of ContainerVisor copies the PTE from the process’ kernel
page table to CMP’s page table to fill the PTE of cla′, and
increments the page map count of the page.

Process creation event: New processes are often cre-
ated by fork() or exec() system calls. When a pro-
cess calls fork() to create a child process, function
copy_process() is invoked in the kernel, which copies the
parent process’ page table to the child process’ page table. The
parent and child processes share the memory using copy-on-
write (COW), i.e., the page tables of both processes are read-
only and both processes share the same address space until
one of the processes tries to modify a page. ContainerVisor
keeps track of the fork operations performed by a process
using hooks in the copy_process() function and notifies
the CMP once a child process is created. CMP then copies
all VA-to-CLA mappings from the parent process’ page table
to the child process’ page table, marks them as COW in
CMP, and increases the reference count number for each CLA.
When the COW page is modified by either the parent or the
child process, the kernel informs the CMP about the write-
protection fault. CMP then checks if the faulted address is
marked COW. If so, CMP allocates a new CLA cla′, maps the
virtual address of the faulted page to cla′, and decreases the
old CLA’s reference number by 1. The kernel then continues
to handle the page fault and maps cla′ to the physical address
of the faulted page.

System call exec() is handled differently. exec() re-
places the current process image with a new process image.
When exec() is invoked, all existing page tables of the
current process are destroyed and the new process’ address
space is loaded. As a result, CMP deletes all VA-to-CLA
mappings of the current process, decreases the reference
number of the corresponding CLAs, and clears the COW flag
of pages that are no longer shared by multiple processes.

Page access change event: When a write protection page
fault is triggered, function do_wp_page() is invoked to
resolve the page fault. If the reference count of the faulted
page is more than 1 (which means that the page is shared by
two or more processes), then the kernel allocates a new page
to resolve the page fault. Otherwise, the kernel simply updates
the access permission of the page in PTE. Our ContainerVisor
uses helper hooks to intercept do_wp_page() and uses

the updated PTE of the faulting page to update the CLAS
mappings.

Page reclamation event: When a process terminates, CMP
no longer needs to keep track of its memory. As a result, CMP
deletes all page table entries related to the process. When
a memory page is freed and returned to the kernel, CMP
updates its page entries. Because function do_exit() is
always called when a process terminates, we inserted a helper
hook into this function to inform the corresponding CMP about
the termination of the process. CMP then zeroes out all mem-
ory pages of the process, erases VA-to-CLA mappings from
CMP’s page table, and deallocates the corresponding CLAs.
Similarly, because the function munmap() is always called
when a memory page is released to the kernel, we inserted
a helper hook into this function to inform the corresponding
CMP about the deallocation event.

B. Customized Per Container Swapping

We have implemented a user-space customized swapping
mechanism in CMP to enforce memory quota and handle page
swap-in and swap-out.

Page swap-out: When a container exceeds its memory limit
(quota), CMP starts swapping its memory pages out. Currently,
we use a swap_array in CMP’s userspace as a swap device.
When a page needs to be swapped out, CMP saves the content
of the page in the array, records the corresponding index, and
stores the tuple (pid, va, index) in the CMP, where pid is
the ID of the process whose page is swapped out, va is the
virtual address of the page, and index is the index in the array
where the page is stored. CMP then deletes the corresponding
VA-to-CLA mapping in its userspace page table and updates
the memory usage. CMP also traps into the kernel to update
the page tables of the process whose page has been swapped
out, locates the corresponding PTE entry in the page tables
of CMP and the process, deallocates the page, and sets the
corresponding PTE as non-present.

Page swap-in: If a page fault occurs and the corresponding
PTE is not empty, then the faulted page has been swapped out.
In this case, the kernel invokes function do_swap_page()
to swap in the page. PTE contains the offset of the page in the
swap device and kernel uses it to locate the page. ContainerVi-
sor handles page swap-in in a different way. Instead of having
the kernel to handle the swap-in operation, ContainerVisor
transfers the control to CMP and sends the process ID pid and
the faulted address va to CMP. CMP then obtains the index of
the page from swap_array and retrieves the page content
based on the index. Next, CMP allocates a new CLA cla′

for the faulted address va, adds the mapping (pid, va, cla′) to
CMP’s page table, reads the page content from swap_array
into cla′ using function memcpy(), and deletes the corre-
sponding record in swap_array. The kernel then allocates a
new physical page for the page being swapped in. Next, CMP
traps into the kernel using ioctl to pass cla′ to the kernel.
The control is then returned to the faulted process’ kernel
context. Finally, the helper hook of ContainerVisor extracts

the PFN from the PTE of cla′, and fills the PTE of va with
the PFN and the PRESENT flag.

Handling COW memory: A page being swapped out may
be shared by multiple processes. In such a case, the kernel uses
a reverse mapping mechanism to locate all PTEs of processes
that share the page, and changes their status from present to
swapped-out.

We have implemented our own reverse mapping table to
facilitate efficient lookup of process IDs and virtual addresses.
When a fork operation is performed, CMP copies all VA-to-
CLA mappings from the parent process’ page table to the child
process’ page table, increases the CLA reference number, and
inserts mappings (cla, ppid, va) and (cla, cpid, va) into the
reverse mapping table for every cla of the parent process,
where ppid is the ID of the parent process, cpid is the ID of
the child process, and va is the virtual address of the page
that is mapped to cla.

When a write protection fault occurs or when function
exec() is invoked, CMP updates the corresponding entry
in the reverse mapping table (e.g. deletes a reverse mapping if
the corresponding page is not COW anymore). When a COW
page is swapped out, CMP uses the reverse mapping table
to get the ID of the process that owns the page and marks
the present bit of the corresponding PTE in all page tables
as swapped-out. When a page is swapped in, CMP not only
handles the swap-in operation of the corresponding processes,
but also updates the VA-to-CLA mapping with new CLA and
update PTEs with the new PFN for all other processes that
own the page.

C. Handling Multiple Processes and Multi-threaded Programs

Multiple containers may run on the same host machine and
the host machine should forward only page faults of processes
inside the target container to CMP. Because each container has
a separate PID namespace from the host and processes within
the same PID namespace have the same inode numbers, we use
inode numbers to identify processes running inside a container.
When a container starts, the CMP passes the inode number of
processes running inside the container to the kernel. When a
page fault occurs, the kernel checks if the inode of the faulted
process is the same as that of the target container. If so, the
kernel redirects the page fault to CMP; otherwise, the kernel
handles the page fault as normal.

Multi-threaded programs are handled similarly as non-
multi-threaded programs except that functions fork() and
exec() are handled differently. When function fork() or
exec() is called to create a process or a thread, function
do_fork() is invoked in the kernel. To distinguish process
creation and thread creation, when fork() is invoked, Con-
tainerVisor compares the parent’s TGID and the child’s TGID,
and if they are the same (which means that a thread is created),
then CMP does not copy the mappings from the parent’s page
table to the child’s page table. Otherwise, CMP copies the
parent’s mappings to the child’s page table. When a process
or a thread terminates, function do_exit() is invoked. In
this case, ContainerVisor compares the current process’ TGID

and PID. If they are the same, then it is a process termination;
otherwise, it is a thread termination.

D. Memory Scrubbing

It is important to scrub memory pages that contain con-
fidential data in order to reduce the lifetime of such data.
However, scrubbing all deallocated pages is expensive. To
address this issue, we implemented an application programmer
interface (API) void *Palloc(size_t size), which
enables programmers to allocate a piece of memory to store
confidential data. Palloc() records the start and end virtual
addresses of confidential memory region. When a process
terminates, CMP scrubs only confidential memory region
allocated using Palloc(). In addition, if a page that has been
swapped out belongs to a confidential memory region, then
the page is also scrubbed as soon as the swap-out operation
is complete.

V. EVALUATION

We now evaluate the effectiveness and performance of
ContainerVisor. All experiments were conducted on a host
system with 16-core Intel Xeon 2.27GHz processor and 70GB
of RAM, running Ubuntu 14.04 with Linux kernel 4.4.2. When
measuring the performance overhead of ContainerVisor over
a specific process, the process is assigned a separate PID
namespace.

A. Effectiveness of Tracking Container Memory

We first evaluate whether ContainerVisor accurately tracks
memory pages used by all processes in a container using
CLAS. We compared the set of memory pages tracked by Con-
tainerVisor against a popular tool called Checkpoint/Restore
In Userspace [12] (CRIU v2.2), which is used to checkpoint
a container. Unlike ContainerVisor, however, CRIU does not
actively track a container’s memory footprint during its exe-
cution or provide customized memory management services.

We created a thread in the CMP to gather virtual ad-
dresses collected by CRIU during container checkpointing.
We also modified the CRIU code so that when it check-
points the memory pages of a container using function
page_xfer_dump_page(), it establishes a TCP socket
connection with the CMP thread and sends all virtual addresses
of the checkpointed memory pages. The CMP thread then
compares the virtual addresses received against those collected
by CMP on its own.

We checkpointed an idle LXC container on which 16 default
system processes were running and several busy containers
running various workloads such as Parsec [13], Sysbench [14],
and the vim text editor. Our comparison showed that Contain-
erVisor accurately tracked all memory pages of the above con-
tainers. We were also able to successfully restore all processes
in these containers using CRIU’s restoration mechanism, but
using memory pages gathered by CMP. Having established the
correctness of ContainerVisor’s memory tracking mechanism,
we next proceed with evaluating the execution time overheads
of ContainerVisor.

 0

 100

 200

 300

 400

 500

 600

16 32 64 128 256 512

M
em

o
ry

 U
sa

g
e

(M
B

)

Block size (MB)

 CLAS
 Sysbench

Fig. 4. Memory overhead of ContainerVisor

kfifo
local variable
for CLA

CMP

Target
Process

T1

Retrieve/Allocate
CLA

read

Insert VA-to-CLA
record

Kernel page
fault handling

Update
CMP’s page
table

ioctl
Page Fault 2T4 T6

T2 T3 T5

T7

Wait in kernel until
get CLA value

Fig. 5. Page fault handling in ContainerVisor.

B. Memory Overhead

We measured the memory usage of ContainerVisor when the
container runs the Sysbench benchmark with different block
sizes. Figure 4 shows that ContainerVisor adds low memory
overhead across all block sizes. When the memory usage of
Sysbench increases, the memory usage of ContainerVisor also
increases slightly because the CMP process must record more
CLAS mappings. With a block size of 512MB, the total
memory usage of Sysbench is 514MB whereas the additional
the memory usage by CMP is only 15MB.

C. Page Fault Handling

This section measures the overhead of ContainerVisor dur-
ing page fault handling. Figure 5 shows the timeline of
page fault event interception and processing in the execution
contexts of the faulting process and the CMP. When a page
fault occurs at time T1, the helper hook in the OS inserts a
notification message into a kernel data structure called kfifo
and waits to receive the corresponding CLA from the CMP
process. The notification message contains the virtual address
of the faulted page, the process ID of the faulted process,
and the event type. The CMP retrieves the message from the
kfifo at time T2. If the faulted page is already assigned
a CLA, the CMP retrieves the CLA from its stored CLAS
mappings, else it assigns a new CLA to the faulted page. The
CMP then passes the CLA to its kernel module using the
ioctl system call at time T3. At T4, the OS resumes handling
the page fault as usual while the CMP records the new VA-to-
CLA mapping in the container’s CLAS. After the page fault

Target waiting Page fault handler Updating CMP PTE Total
1.50µs 1.087µs 0.208µs 2.825µs

TABLE I
AVERAGE PAGE FAULT HANDLING TIME AND ITS COMPONENTS.

 0

 1

 2

 3

 4

 5

 6

 7

 8

bodytrack streamcluster ferret facesim swaptions

 E
x

ec
u

ti
o

n
 T

im
e

(s
)

 without CLAS
 with CLAS

Fig. 6. Parsec benchmarks running individually in a container.

is resolved at T6 by allocating a new physical page, the OS
also updates the CMP’s page table to map the CLA received at
T4 to the physical address of the newly allocated page, which
corresponds to establishing the CLA-to-PA mapping. We call
the time between T1 and T4 the target waiting time and the
time between T6 and T7 the CMP page table updating time.

We wrote a target program to stress test ContainerVisor.
The program repeatedly allocates memory using malloc()
and calls memset() to write to the allocated memory. In
our experiments, the program allocates between 100MB to
500MB of memory by allocating one 4KB page in each
iteration. We measured the average time spent in handling
each page fault in the OS. Without ContainerVisor, the page
fault handling time is the execution time of the fault handler
routines, such as do_anonymous_page(), do_fault(),
and do_wp_page(). With ContainerVisor, the additional
time for page fault handling is the sum of target waiting time
and the CMP page table updating time.

Table I shows that the average page fault handling time is
about 2.8µs for all workload sizes. Of this, ContainerVisor’s
additional overhead of 1.7µs is primarily due to the latency
of communicating the page fault event and response with the
user space CMP process. Future work can eliminate this user-
kernel communication latency by moving the CLA assignment
to the CMP’s kernel module.

D. Application Performance Overhead

This section compares the performance of applications in a
container, with and without ContainerVisor.

Parsec: We measured the performance overhead of five
benchmark programs in Parsec [13], namely bodytrack,
streamcluster, ferret, facesim, and swaptions. All except
facesim are multi-threaded programs. Figure 6 shows the

Benchmark Number of page faults Number of Threads
bodytrack 6011 3
streamcluster 2550 3
ferret 31284 7
facesim 88373 1
swaptions 1621 16

TABLE II
NUMBER OF PAGE FAULTS AND THREADS GENERATED BY VARIOUS

PARSEC BENCHMARKS FOR FIGURE 6.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

bodytrack streamcluster ferret facesim swaptions
 E

x
ec

u
ti

o
n

 T
im

e
(s

)

 without CLAS
 with CLAS

Fig. 7. Multiple Parsec benchmarks running simultaneously in a container.

execution time of these benchmarks with and without Con-
tainerVisor. Table II lists the number of page faults and the
number of threads created in these benchmarks. We used the
default argument “simlarge” (large-sized input) to measure
the performance of these benchmarks. ContainerVisor barely
affects the execution times of bodytrack, streamcluster, and
swaptions due to lower number of page faults. However ferret
and facesim take about 0.2 seconds and 0.34 seconds longer
with ContainerVisor because these two incur significantly
more page faults. The number of threads created does not
affect the execution time in this experiment.

To assess the impact on a mix of workloads, we ex-
ecuted all five Parsec benchmarks simultaneously inside a
container, with and without ContainerVisor. Figure 7 shows
that ContainerVisor increases the execution time of different
benchmarks between 0.7 seconds to 1.2 seconds, which is
higher than the uniform workload experiment above. When
running multiple benchmark processes simultaneously, many
concurrent page faults are generated. However, our current
CMP implementation sequentially handles these page fault
events one at a time. Future work can eliminate this sequential
bottleneck by parallelizing the processing of concurrent page
fault events in CMP.

Sysbench: We used Sysbench [14] to measure the perfor-
mance of memory write operations with and without Contain-
erVisor. Sysbench repeatedly writes to a memory block of a
given “block size” bytes till it writes a specified “total memory
size” number of bytes. We study the impact of varying these
two parameters using the following three experiments.

 0

 1

 2

 3

 4

 5

 6

 7

 8

32 64 128 256 512

E
x

e
c
u

ti
o

n
 T

im
e
 (

s)

Block size (MB)

 without CLAS
 with CLAS

Fig. 8. Sysbench with different block sizes. Total memory size = 32GB.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

32 64 128 256 512

E
x

ec
u

ti
o

n
 T

im
e

(s
)

Total Memory Size (MB)

 without CLAS
 with CLAS

Fig. 9. Sysbench with different total memory sizes. Block size = total memory.

 0

 1

 2

 3

 4

 5

 6

 7

 8

.5 2 4 8 16 32

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Total Memory Size (GB)

 without CLAS
 with CLAS

Fig. 10. Sysbench with different total memory sizes. Block size = 512MB.

In our first experiment (Figure 8), the total memory size
is 32GB while the block size is varied. Sysbench uses one
thread to perform repeated writes over the memory block. As
the block size increases, Figure 8 shows that ContainerVisor
incurs higher overhead because of increasing number of page
faults – from 8598 page faults for 32MB block size to 131486
page faults for 512MB block size.

Figure 9 shows the performance of Sysbench in a worst-
case scenario, in which the memory block size and the total
memory size are the same, which means that the memory
block is written to only once. Execution time with Contain-
erVisor almost doubles compared to without ContainerVisor as
the number of page faults generated increases from 8643 for
32MB total memory size to 131525 for 512MB total memory
size. However this experiment represents an extreme scenario
where a page fault is triggered for every page access and
each memory location is not accessed more than once. Typical
applications with higher locality would reuse a page multiple
times after first access (which triggers a page fault) and thus
amortize the cost of page faults.

In the third experiment, we show that ContainerVisor’s over-
head is much smaller with a lower rate of page faults. We mea-
sured the performance of Sysbench with a fixed 512MB block
size, while the total memory size increases from 512MB, to
32GB. Figure 10 shows that, with ContainerVisor, Sysbench
takes about 0.3 second longer irrespective of the total memory
size. The proportion of this overhead becomes lower as the
total memory size increases because Sysbench writes to the
same memory block more times. The number of page faults
generated for different memory sizes remains stable, between
131483 and 131523, because the block size remains fixed and
only the first page access triggers a page fault.

E. Memory Scrubbing

ContainerVisor provides the ability to scrub the confidential
memory of a process as soon as the process terminates, which
helps to reduce the lifetime of confidential data stored in the
memory. In our experiment, we opened a terminal inside a
VM, executed the vim command in the terminal to open
a file, attached the vim process to a ContainerVisor, typed
“securityword” in the file, and terminated vim. Even though
the application is terminated, the contents of its memory (in
this case with the string “securityword”) can linger around in
deallocated memory pages inside OS buffers. To detect the
presence of such residual application data in the memory of
guest OS, we then used the pmemsave command from the
host OS to dump the entire memory contents of the VM to a
file. Without ContainerVisor, the string “securityword” appears
8 times in the VM’s memory dump file. With ContainerVisor,
the string appears only 3 times. Since the CMP process scrubs
(zeros out) the memory pages of terminated processes before
returning them to the OS, all user space occurrences of the
confidential data are erased. However, the string still appears
3 times in the kernel memory of the guest OS because our
current implementation does not track and scrub kernel pages
that may contain residual application data.

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

 M
em

o
ry

 S
iz

e(
K

B
)

Result 1 Result 2 Result 3 Result 4

 Swap

 RSS

Fig. 11. With Cgroups: RSS and Swap-out sizes for P1, P2, P3.

F. Memory Reservations and Customized Page Replacement

We now demonstrate ContainerVisor’s per-process memory
reservation and customized page replacement policies.

In our experiment, we created a Cgroup memtest with three
processes P1, P2, and P3. We set memory.limit in bytes
parameter of memtest as 100MB. Process P1 used 60MB
memory, P2 used 50MB, and P3 used 40MB. Together
these three processes consumed about 150MB memory, which
exceeded the 100MB limit of memtest. As a result, swapping
was triggered by the OS to evict excess memory used. We
used the command smem to obtain the amount of memory
swapped out and the current resident set size (RSS). Figure 11
shows the results over four rounds of the experiment. The
figure shows that different amount of memory is swapped out
for different processes in different rounds. This is because
Linux maintains a per-Cgroup LRU (least recently used) list
for swapping pages and, in different rounds, the least recently
used memory pages are different. Cgroups does not provide a
way to specify guaranteed memory reservation for individual
processes in a container, making it hard to predict which
process’ pages would be evicted during memory pressure, and
by how much.

To address this problem, ContainerVisor implements a sim-
ple memory reservation mechanism for individual processes
in a container along with a customized swapping policy, as a
proof-of-concept. Page eviction decision is made based on a
processes’ current memory usage and its memory reservation.
Say, there are n processes P1, P2, . . . , and Pn. We specify
R as the total memory limit of a container and ri as the
memory reservation for process i. Let ui be the memory
usage of process i at any instant. When the total memory
usage

∑n
i=1 ui is greater than R, swapping is triggered. Let

∆i = max(ui−ri, 0). In our customized swapping policy, the
pages of the process that has the largest ∆i

ri
will be swapped

out. The above procedure repeats until
∑n

i=1 ui is below R.
We repeated the earlier experiment of three processes, this

time with ContainerVisor applying the above reservation and
custom swapping policy. The memory reservation for P1, P2,
and P3 are set to 30MB, 20MB, and 50MB, respectively.

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

ReservationUsage ReservationUsage ReservationUsage

 M
em

o
ry

 S
iz

e(
K

B
)

P1 P2 P3

 Reservation

 Swap

 RSS

Fig. 12. With CMP: Reservation, RSS and Swap-out sizes for P1, P2, P3.

Figure 12 shows that with ContainerVisor, only memory pages
of processes P1 and P2 are swapped out because their memory
usage exceeds their reservation. However, pages of process
P3 are not evicted because its usage is below its reservation.
The result is the same however many times the experiment
is repeated. ContainerVisor also allows a process to use more
memory than its reservation as long as the total memory used
by the container does not exceed its assigned limit.

VI. RELATED WORK

Container-based virtualization: Linux Container
(LXC) [2] and Docker [3] are two widely used container
platforms. The Linux Containers project provides a virtualized
environment for executing groups of applications while
avoiding the overhead of system VMs running a separate OS
over emulated hardware. Various accounting and tracking
operations were implemented in Linux Containers by
scanning the address space of each individual process
in the container. For instance, CRIU [12] relies on the
/proc pseudo file system to implement checkpointing and
restoration mechanisms. However, CRIU does not provide
run-time tracking and monitoring of memory pages. Instead,
it collects each process’ memory mapping information
separately through proc and dumps the pages into files using
a parasite code inserted into each target process. In contrast,
ContainerVisor uses the information in /proc file system
only when initializing the CLAS mappings of a process.
After the initiation, ContainerVisor does not rely on /proc
to monitor container memory. FreeBSD jail [15] provides an
OS-level virtualization mechanism that allows separate virtual
environments called jails to be hosted on a single machine.
Each jail has its own files, processes, and user accounts.
Solaris Zones [16] is a lightweight technology for creating a
virtualization layer for applications. Unlike ContainerVisor,
neither jails nor Solaris Zones provides run-time tracking or
customized management of a container’s memory.

Kubernetes [17] is a container management system for
automating the deployment of containers. Osman et al. pro-
posed Zap [18], a virtualization layer containing a group of
processes within a private namespaces. It provides transparent

checkpoint-restart of unmodified applications. Potter et al.
proposed AutoPod [19] to provide a group of processes host-
independent virtualized environment. AutoPod also uses a
checkpoint-restart mechanism to enable unscheduled operating
system updates while preserving application service availabil-
ity. Both Zap and AutoPod reply on the /proc pseudo file
system to collect memory pages of processes and do not
provide run-time monitoring of container memory.

Intel Clear Container [20] is a lightweight system VM with
its own guest OS implemented on top of kvmtool [21], a mini-
hypervisor that provides minimal amount of device emulation.
In contrast, ContainerVisor does use system VMs but targets
customized services for native containers.

Interception of system calls and page faults: Prior work
has proposed techniques to improve the performance of virtual
machines and enable applications to directly process page fault
and system call events by exposing virtual machine hardware
to applications directly. Belay et al. proposed Dune [22] that
leverages the hardware supported Extended Page Table (EPT)
and syscall redirection handlers to provide applications with
direct and safe access to privileged CPU features. However,
Dune does not support the execution of multiple processes
in Dune mode, while ContainerVisor does. In addition, in
order to use Dune, applications need to be modified to include
Dune APIs. ContainerVisor, in contrast, does not require the
modification of applications. ContainerVisor also does not use
second-level hardware page tables, such as EPT. On one hand,
this provides more flexibility, but also introduces performance
overheads due to shadow maintenance of OS page tables. Our
future work will investigate the use of second-level page tables
for maintaining CLAS mappings.

Srinivasan et al. presented process out-grafting [23], an out-
of-VM solution for fine-grained process execution monitoring.
Out-grafting uses kernel modules to forward page faults be-
tween VMs and uses the hypervisor to capture page faults.
ContainerVisor, in contrast, uses helper hooks in the kernel
to intercept relevant events.. Nova [24] is a microhypervisor-
based secure virtualization architecture that minimizes the
amount of code in the privileged hypervisor. It also provides
user-space page table management. However, Nova relies on
the hardware support for full virtualization, such as VT-x and
AMD-V, to intercept page faults, but ContainerVisor does
not. OSv [25] is a mere guest operating system designed
specifically for a single application running inside an VM. In
contrast, ContainerVisor is not an OS, but a container-specific
service agent for memory tracking and service customization.
Ptrace [26] is a system call that enables one process to ob-
serve and control the execution of another process. Compared
to ContainerVisor’s memory event interception mechanism,
Ptrace is less efficient as it incurs more user-kernel context
switches.

VII. CONCLUSION

In this paper, we proposed a Container-Level Address Space
(CLAS) abstraction to encapsulate and track a container’s
memory footprint across all of its constituent processes. We

presented ContainerVisor, a container resource management
system that uses CLAS to provide customized memory man-
agement services to a container. We implemented and evalu-
ated a prototype of ContainerVisor in Linux along with three
proof-of-concept customized services, namely, memory reser-
vations for individual container processes, scrubbing confiden-
tial memory after memory deallocation, and customized per-
container swapping. Evaluations show that our ContainerVisor
prototype using CLAS can effectively provide customized
memory management services within reasonable overheads.

ACKNOWLEDGEMENT

We would like to thank our shepherd, Gerd ZellWeger, and
anonymous reviewers for their feedback to improve this paper.
This work has been funded in part by the National Science
Foundation through awards 1527338 and 1320689.

REFERENCES

[1] “OS-level virtualisation,” https://en.wikipedia.org/wiki/OS-
level virtualisation.

[2] LXC, https://linuxcontainers.org/lxc/.
[3] Docker, https://www.docker.com.
[4] Linux Namespaces, https://en.wikipedia.org/wiki/Linux namespaces.
[5] M. Kerrisk, “Namespaces in operation,” https://lwn.net/Articles/531114/.
[6] Cgroups, https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
[7] Cgroups wiki, https://en.wikipedia.org/wiki/Cgroups.
[8] A. Kivity, Y. Kamay, and D. Laor, “kvm: the Linux virtual machine

monitor,” in Proc. of the Ottawa Linux Symposium, 2007.
[9] Xen Hypervisor, http://http://www.xen.org/.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. of ACM Symposium on Operating Systems Principles, 2003.

[11] “Second level address translation,” https://en.wikipedia.org/wiki/
Second Level Address Translation.

[12] Checkpoint/Restore in Userspace, http://criu.org.
[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-

mark suite: Characterization and architectural implications,” Princeton
University, Tech. Rep. TR-811-08, January 2008.

[14] A. Kopytov, “Sysbench,” https://github.com/akopytov/sysbench.
[15] FreeBSD Jails, https://www.freebsd.org/doc/handbook/jails.html.
[16] “Solaris Containers,” https://en.wikipedia.org/wiki/Solaris Containers.
[17] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,

Omega, and Kubernetes,” Communications of ACM, vol. 59, no. 5, pp.
50–57, 2016.

[18] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of Zap: A system for migrating computing environments,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 361–376, Dec. 2002.

[19] S. Potter and J. Nieh, “Autopod: Unscheduled system updates with zero
data loss,” Second International Conference on Autonomic Computing
(ICAC’05), pp. 367–368, 2005.

[20] Intel Clear Containers, https://clearlinux.org/features/intel-clear-
containers.

[21] J. Corbet, “The native KVM tool,” https://lwn.net/Articles/438182/.
[22] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and

C. Kozyrakis, “Dune: Safe user-level access to privileged CPU features,”
in Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, 2012, pp. 335–348.

[23] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
An efficient “out-of-VM” approach for fine-grained process execution
monitoring,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS’11), 2011.

[24] U. Steinberg and B. Kauer, “NOVA: A microhypervisor-based secure
virtualization architecture,” in Proceedings of the 5th European Confer-
ence on Computer Systems (EuroSys), 2010, pp. 209–222.

[25] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “OSv – Optimizing the operating system for virtual
machines,” in USENIX Annual Technical Conference, 2014.

[26] “ptrace,” https://en.wikipedia.org/wiki/Ptrace.

