
Privacy-preserving Virtual Machine

Tianlin Li ∗

Dept. of Computer Science
Binghamton University
Binghamton, NY, 13902

tli16@binghamton.edu

Yaohui Hu ∗

Dept. of Computer Science
Binghamton University
Binghamton, NY, 13902

yhu15@binghamton.edu

Ping Yang
Dept. of Computer Science

Binghamton University
Binghamton, NY, 13902

pyang@binghamton.edu
Kartik Gopalan

Dept. of Computer Science
Binghamton University
Binghamton, NY, 13902

kartik@binghamton.edu

ABSTRACT
Cloud computing systems routinely process users’ confidential data,
but the underlying virtualization software in use today is not con-
structed to minimize the exposure of such data. For instance, vir-
tual machine (VM) checkpointing can drastically prolong the life-
time and vulnerability of confidential data without users’ knowl-
edge by storing such data as part of a persistent snapshot. A key
requirement for minimizing the exposure of any data is the abil-
ity to cleanly isolate such data for either exclusion or processing.
Traditional mechanisms for memory taint tracking are expensive
whereas those for isolating application footprint in VM-based sand-
boxes are not transparent. In this paper, we propose a transpar-
ent and lightweight mechanism for isolating a confidential applica-
tion’s memory footprint in a VM. The key idea is for a parent VM
to spawn a child VM, called a Privacy-preserving Virtual Machine
(PPVM) within which the confidential application executes. Hy-
pervisor features, such as VM checkpointing, that need to exclude
the memory of a confidential application can safely ignore the child
VM’s memory footprint. Alternatively, features such as checkpoint
encryption or malware tracking can operate only on the child VM’s
memory. We implement memory isolation for PPVM through a
lightweight VM fork operation that uses copy-on-write to reduce
the memory and filesystem overhead of the PPVM. Transparency
is achieved through a confidential shell that allows the parent VM
to spawn the confidential application in the PPVM and exercise
control over it during runtime. We demonstrate the effectiveness
of PPVM through its use with a standard hypervisor service, VM
checkpointing, which can safely checkpoint the parent VM while
excluding or encrypting the associated PPVM. We show that our
PPVM implementation achieves effective memory isolation with
low overheads on memory, CPU, and network performance.

∗Co-first authors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12$15.00

DOI: http://dx.doi.org/10.1145/2818000.2818044

1. INTRODUCTION
Modern cloud platforms increasingly process and store users’

confidential data, such as passwords, financial information, health
records, lawyer-client correspondence, and other personally iden-
tifying information. When using such cloud services, users have
certain implicit expectations of data privacy, whether or not it is
explicitly guaranteed by the cloud provider. Users may expect that
their confidential information will not be stored beyond its useful
lifetime; for example, credit card numbers will be forgotten after
a successful transaction (unless explicitly authorized by the user),
and passwords will not be stored in decrypted form except in mem-
ory during authentication. Users may also expect that their private
data won’t be disseminated in ways not reasonably expected by the
user; for example, copies of their private data will not be duplicated
and shared with third parties.

Cloud platforms heavily rely on virtualization technologies. The
services hosted in the cloud often run within virtual machines (VMs).
On one hand, VMs improve security in shared cloud infrastructures
through greater isolation, and more transparent malware analysis
and intrusion detection [31, 32, 37, 7, 9, 13, 19, 39, 35, 24]. On the
other hand, VMs also give rise to new privacy and security chal-
lenges.

To handle confidential data correctly, any system must be able
to first cleanly identify and isolate such data. We focus mainly
on confidential data stored in the main memory since such data
is more likely to be unencrypted. Unfortunately, the underlying
virtualization and operating systems software in use today are not
constructed to control and minimize the exposure of in-memory
confidential data. Consequently, confidential data can be spread
around in unexpected places in memory, increasing the risk of that
data being stored and accessed beyond its useful lifetime and by
unauthorized parties.

Existing OS-level approaches to minimizing the lifetime of con-
fidential data include clearing deallocated memory [11, 6, 41, 1],
taint tracking [38, 48], selective exclusion [15, 18], and selective
encryption [11]; these mechanisms do not provide a single encap-
sulated memory space where the confidential data can be stored
and processed, besides having high performance overheads. VM-
based sandboxing approaches [10] tend to have high VM creation
and memory overhead and may not be transparent to applications.

In this paper, we propose a transparent and lightweight mecha-
nism for cleanly isolating a confidential application’s memory foot-
print in a VM. The key idea is for a VM to spawn (or fork) a child

VM, called a Privacy-preserving Virtual Machine (PPVM), which
runs alongside the original (parent) VM; confidential applications
execute in the PPVM whereas regular applications run in the par-
ent VM. Hypervisor features, such as VM checkpointing, that need
to exclude the memory of a confidential application can safely ig-
nore the PPVM’s memory footprint. Alternatively, features such as
checkpoint encryption or malware tracking can selectively operate
only on the PPVM’s memory.

PPVM has two salient features that make it different from a tra-
ditional VM. First, PPVM is lightweight, which means that PPVM
can be launched quickly and does not impose significant overheads
beyond the requirements of the confidential application that it runs.
We implement a lightweight VM fork operation that uses copy-on-
write to reduce the memory and filesystem overhead of the PPVM.
Second, PPVM is transparent to the confidential applications, which
means that confidential applications are unaware that they are run-
ning within a PPVM. Transparency is achieved through a confi-
dential shell that allows the parent VM to spawn the confidential
applications in the PPVM and control them during runtime.

We demonstrate the effectiveness of PPVM using a standard hy-
pervisor service, VM checkpointing, which saves a persistent snap-
shot of a VM’s state at a given instant. A VM’s state includes, at
the minimum, its memory image and CPU execution state and pos-
sibly additional state such as virtual disk contents. The checkpoint
can be later used for various purposes such as restoring the VM to
a previous state, recovering a long-running process after a crash,
distributing a VM image with a preset execution state among mul-
tiple users, archiving a VM’s execution record, conducting forensic
examination, etc. Most hypervisors such as VMware [44], Hyper-
V [28], VirtualBox [34], KVM [22], and Xen [47] support VM
checkpointing. Despite the above benefits, VM checkpoints can
drastically prolong the lifetime and vulnerability of sensitive data.
Data that should normally be discarded quickly after processing,
such as passwords, credit card numbers, health records, or lawyer-
client conversations can now be saved forever in persistent stor-
age through VM checkpointing [15]. We show that when a VM
executes its confidential applications in a PPVM, a VM check-
pointer can easily save the VM’s memory snapshot while selec-
tively excluding (or encrypting) the contents of any confidential ap-
plications running in the PPVM. Our evaluations show that PPVM
achieves effective memory isolation for confidential applications
with low overheads on memory, CPU, and network performance.

Assumptions and threat model: We assume that the VM and
its user applications are not compromised. We also assume that
the hypervisor and its checkpointing mechanism are secure. We
also assume that anytime after a VM is checkpointed, multiple third
parties (including malicious attackers) have the ability to access the
checkpoint, examine it, or copy it to a remote site for later analysis.
The third parties can also restore the VM from the checkpoint or
modify the checkpoint. Finally, the checkpoint may be distributed
or shared among multiple unknown users.

The rest of the paper is organized as follows. Sections 2 and 3
present the design and implementation of PPVM. The experimental
results are presented in Section 4. Section 5 describes the related
work and Section 6 concludes the paper.

2. DESIGN OF PPVM
We propose a privacy-preserving VM (PPVM) to facilitate clean

and exhaustive identification of a confidential application’s mem-
ory footprint and disk contents, which can then be excluded (or
optionally encrypted) by the checkpointer. Figure 1 illustrates the

architecture of the PPVM. A PPVM is a special lightweight VM
which executes alongside a regular VM (called “Primary VM”)
that is to be checkpointed. Confidential applications, which would
normally execute within the Primary VM as “regular” processes,
are now executed within the PPVM as one or more “PPVM pro-
cesses”. When the Primary VM is checkpointed, the entire mem-
ory footprint of the PPVM is excluded from the checkpoint. PPVM
includes all the system services needed by confidential processes.
Thus the memory footprint and disk contents of confidential pro-
cesses are cleanly isolated from the Primary VM. We no longer
need to track the confidential application’s system-wide dependen-
cies, such as its scattered memory footprint or I/O operations. When
the Primary VM is restored from a checkpoint, the restored image
would be automatically free of any confidential processes that ex-
isted before checkpointing.

The two requirements in realizing PPVMs are that (1) PPVM
must be lightweight, and (2) PPVM must be transparent to the con-
fidential applications being excluded from the checkpoint. In the
rest of this section, we describe how the above two requirements
are addressed in the PPVM design.

2.1 Lightweight
The requirement of being lightweight means that PPVM must

be launched quickly and should not impose significant memory,
CPU, and I/O overheads beyond the requirements of the confiden-
tial applications that it runs. Launching a PPVM involves copy-
ing the CPU and I/O states from the Primary VM to the PPVM
and enabling PPVM to access identical memory and disk content
as the Primary VM has at launch time, but without any copying
overheads. PPVM uses copy-on-write (COW) sharing of memory
with the Primary VM, much like process fork and VM Fork oper-
ations [46, 16, 26]. Similarly, if PPVM’s disk I/O operations are
considered confidential, then PPVM can optionally share a copy-
on-write disk image with the Primary VM. Thus, upon launch,
PPVM is essentially a clone of the Primary VM insofar as its crit-
ical system components are concerned. Copies are subsequently
made only for those memory and disk contents that are dirtied by
either the PPVM or the Primary VM.

2.2 Transparency
The transparency requirement means that confidential applica-

tions should be unaware that they are running within a PPVM. In
other words, all PPVM processes appear to be part of the Primary
VM’s system image, and observe exactly the same process and I/O
namespace as other processes in the Primary VM. However the
PPVM provides a self-contained execution context for confidential
processes, including separate OS kernel, libraries, networking, I/O,
and other services. Transparency of the PPVM is achieved through
a confidential shell that allows a user to use the Primary VM to
spawn the confidential application in the PPVM and to observe and
control the execution of PPVM processes the same way she can
control regular processes in the Primary VM. We use Agents, which
are user-level programs, to communicate between the Primary VM
and the PPVM. For instance, the Primary VM’s agent conveys the
the path and the arguments for executing the confidential applica-
tion to the PPVM’s agent. At the time of restoring the Primary VM
from the checkpoint, the hypervisor uses an event-channel based
callback mechanism to inform the guest OS in the Primary VM of
the restoration operation. The callback resets the guest OS’ internal
state to account for the absence of the PPVM.

Hypervisor

Guest OS

Primary VM

Privacy-preserving Checkpointer

PPVM

Guest OS

Confidential
Process N

Confidential
Process 1

Regular
Process 1

Regular
Process M

Single Process Namespace

Figure 1: PPVM Architecture: Primary VM and PPVM share copy-on-write memory. PPVM’s confidential processes remain under
the control of the Primary VM’s root.

3. PPVM IMPLEMENTATION
We have implemented PPVM in QEMU/KVM virtualization plat-

form in the Linux operating system. This section presents the im-
plementation details of our system.

3.1 Memory Copy-on-write
KVM uses extended page table (EPT) to implement memory vir-

tualization. When a process inside a VM accesses a memory loca-
tion, the guest page table is used to translate the guest virtual ad-
dress of the memory into the guest physical address. EPT is then
used to translate the guest physical address to the host physical ad-
dress. If the guest physical address is not in the EPT, then the VM
exits and KVM uses the host page table to get the correct page
frame number and adds the mapping to the EPT. The process inside
the VM can access the memory on the host once the corresponding
host physical page is obtained from EPT.

The key insight behind making PPVM lightweight is implement-
ing a memory copy-on-write mechanism, which means that mem-
ory pages of both VMs are mapped to the same page frames and
these page frames are marked copy-on-write. To achieve this, we
first mark the host page table and the EPT entry of the Primary VM
as read-only. We then build the host page table for PPVM, which
maps the host virtual address of the PPVM memory to the corre-
sponding host physical address (page frame number) used by the
Primary VM; the page map count of the corresponding page frame
is increased by 1. We wrote a KVM ioctl API VM_Fork to im-
plement the quick cloning of the Parent VM. We also implemented
two functions Set_RAM and Record_Child which were used
to record the information needed for implementing VM_Fork.
Set_RAM is invoked when the multiple memory regions, called
RAM blocks, are initialized in QEMU. Set_RAM stores the in-
formation about the RAM blocks, such as slot number, RAM size,
and the starting host virtual address, in the kernel. Record_Child
records the data structures used by the PPVM, including pointers
to struct kvm (a data structure storing the information of a VM
such as vCPU and memory etc.) and struct mm_struct (a data
structure storing the memory information of processes).

Our first implementation of VM_Fork was to construct the host
page table entries for PPVM one at a time, as shown in Figure 2.
VMs with the same configuration have the same physical memory
layout and the same KVM memory slot layout. KVM memory
slot structure records the physical memory layout in a VM, which
stores the guest frame number and the corresponding host virtual
address. Figure 3 shows how to compute the host virtual address

guest physical memory
(Guest Page Frame)

guest physical memory
(Guest Page Frame)

Primary VM’s
host virtual address

Primary VM PPVM

PPVM’s
host virtual address

host page table of
Primary VM

host page table of
PPVM

Host

CoW memory
(physical page frame)

Hardware

Figure 2: An implementation of VM_Fork that constructs each
host page table entry for PPVM individually.

of the PPVM from the host virtual address of the Primary VM. For
every host virtual address in the Primary VM, we get the KVM slot
ID and offset of the corresponding RAM block; this information
is obtained when the RAM block is added to both VMs. We then
use the same slot ID and offset to get the host virtual address of
the PPVM from PPVM’s RAM block. Next, we obtain the page
frame number from the Primary VM’s host page table. With the
PPVM’s host virtual address and page frame number, we build the
corresponding host page table entry for the PPVM.

The above approach, however, is inefficient: To construct each
page table entry of the PPVM, we need to traverse multi-level page
tables – page global directory(pgd), page upper directory(pud),
page middle directory(pmd), and the host page table of the Primary
VM. Our experimental results show that, it took around 25 sec-
onds to process memory copy-on-write for an idle VM with 1GB
memory size. Inspired by the normal fork mechanism, we lever-
age the existing kernel function copy_page_range() to create the
PPVM page table in batches (as shown in Figure 4), which signifi-
cantly reduces the number of times it takes to traverse the multi-
level page tables. In the normal process fork mechanism, after
setting up the process descriptor, copy_mm() function is called to
create new page tables and copy the contents of page table entries

HVA in
primary VM slot id & offset HVA’ in PPVM

primary VM’s RAM info PPVM’s RAM info

Figure 3: Computing the host virtual address in PPVM from the host virtual address of the Primary VM.

guest physical memory
(Guest Page Frame)

guest physical memory
(Guest Page Frame)

Primary VM PPVM

host page table of
Primary VM

host page table of
PPVM

Host

CoW memory
(physical page frame)

Hardware

copy_page_range()

host virtual address

Figure 4: A more efficient implementation of VM_Fork that
constructs host page table entries for PPVM in batches.

from the parent process to the child process. Since both the parent
and child processes have identical process address space, the child
process does not need to traverse the multi-level page tables every
time when constructing a page table entry. In our VM_Fork imple-
mentation, we modified the function to initialize RAM blocks to
force the PPVM to have the same host virtual address as the Pri-
mary VM for every region of virtual memory. We then copy all
the page entries from the Primary VM in batches within the virtual
address range. The above optimization reduces the memory COW
time from 25 seconds to less than 100 milliseconds.

3.2 Disk Copy-on-Write
To prevent the confidential data from being stored on the disk

when the Primary VM is checkpointed, the PPVM has the option
to be configured with its own disk space. Upon PPVM’s launch,
the PPVM and its Primary VM share the same copy-on-write disk
image. After the confidential application runs inside the PPVM,
any I/O operations performed by the confidential application are
directed to PPVM’s own disk.

In QEMU, we use disk snapshot to start the VM. The snapshot in
QEMU refers to the base image and Redirect-on-Write is applied
everytime when the VM is checkpointed to avoid modification to
the base image. To enable the PPVM to have the same disk contents
as the Primary VM before the PPVM starts, we can make a copy
of the disk snapshot of the primary VM and use the copy as the
disk file image for the PPVM. However, copying the whole snap-
shot could be time-consuming if the size of the snapshot is large.
For example, our experimental results show that it took around 35
seconds to make a copy of a snapshot whose size is 2.9GB. Alter-

Host Primary VM PPVM

wait on wait_queue

vm stop
copy disk file

mem cow

migrate CPU/IO status

inject IRQs
vm resume

set network
child’s network is ready

send CA command

CA is running

Fork to run CA

wait on wait_queue

Agent

Kernel Module

handle IRQ
return to Agent

handle IRQ
return to Agent

time 2

time 1

Figure 5: Sequence of events in forking a PPVM from the par-
ent VM and launching a confidential application.

natively, we can also commit the snapshot of the primary VM to
the base image just before PPVM starts (using qemu-img commit)
and then create a second snapshot of the base image as the disk
file for the PPVM (using qemu-img create). However, committing
the snapshot may be time consuming. For example, in our experi-
ment, it took around 25 seconds to commit a snapshot whose size
is 2.9GB and 0.1 second to create a new snapshot.

To reduce the launch time of PPVM, we use B-tree file system
(Btrfs) to improve the efficiency of creating the initial disk image
for the PPVM. Btrfs is a copy-on-write file system. It provides a
cloning feature which creates a new inode sharing the same disk
blocks with the original files. The data blocks are not duplicated.
Since Btrfs uses copy-on-write, any modifications to the cloned file
are not visible to the original file and vice versa. By putting the
base image and the snapshots under the directory in which Btrfs
is installed, we just need to clone the snapshot of the Primary VM
to create the initial disk image for the PPVM. Our experimental
results show that, with Btrfs, it took less than 150 milliseconds to
clone a snapshot whose size is 2.9GB.

3.3 Launching the PPVM
In PPVM, we use agents to start the PPVM automatically and

to communicate between the Primary VM and the PPVM. Figure 5
shows the sequence of steps for launching the PPVM. First, the
user requests the agent in the Primary VM to start a confidential

application. Since the agent is a user-level program in the VM
and VM_Fork is implemented in the QEMU process on the host,
the agent cannot directly call the VM_Fork function. To allow the
agent to trigger VM_Fork, we developed a guest kernel module
with character device interface that provides ioctl API for agent to
trap into the kernel. The module then uses UDP connection to in-
form QEMU to start PPVM and waits on a wait queue. The QEMU
process of the Primary VM has a separate thread waiting for the
VM_Fork request. This thread stops the Primary VM, creates the
disk image for the PPVM, performs memory copy-on-write, and
migrates CPU and I/O states of the Primary VM to the PPVM. Af-
ter VM_Fork is complete, there are two QEMU processes, one for
the Primary VM and another for the PPVM. Each QEMU injects a
different interrupt to wake up their corresponding VMs which are
waiting in the queue. Based on the interrupt handler invoked, each
VM can determine whether it is the Primary VM or the PPVM.
The agent then returns from the kernel module to the user space
with the return value specifying whether it is the Primary VM or
the PPVM. Based on the different return values, the agents can act
on behalf of their corresponding VMs, much like how the return
value from a regular fork() system call distinguishes between a
parent and a child process. The agent in the PPVM then sets up
the network and notifies the Primary VM that it is ready to run the
confidential application. Finally, the primary VM sends the appli-
cation path and parameters needed to execute the application to the
PPVM. The PPVM then forks a new process to run the application
and notifies the Primary VM.

3.4 Network Transparency
While PPVM provides all necessary system services in a self-

contained manner, some services would need to mirror or share
the Primary VM’s services. For example, network transparency re-
quires that confidential applications which run within PPVM, must
be able to use the network identity of the parent VM when com-
municating with external hosts. Specifically, the PPVM must use
the same IP and MAC addresses as the Primary VM. To achieve
this, we developed an IP/MAC mirroring functionality in the un-
derlying hypervisor’s network subsystem. The PPVM is config-
ured with a new MAC address and a new IP address, which is in
the same subnet as the Primary VM. We then use a NAT layer on
the host to forward the inbound packets to the proper VM based on
the port number and to change the IP address of outbound packets
to a common IP address for both VMs. For example, assume that
the common IP address is IPc which is an IP alias of the host, the
IP address of the Primary VM is IP1, and the IP address of PPVM
is IP2. When a user sends a TCP request (IPc,Pn) to the host ma-
chine where the PPVM resides, requesting to connect to a server
running on the PPVM that has port number Pn, the host intercepts
the request and change the request to (IP2,Pn) based on the NAT
rules set previously. When the Primary VM or the PPVM sends
requests to an external machine, the IP address is changed to IPc.

3.5 Display service
Confidential applications in PPVM may need display services,

such as a tty terminal or a graphical window. This is challenging
because we wish to avoid tainting the parent VM’s memory with
child VM’s display contents. Currently, we use SSH with X11 for-
warding to provide remote login and display access to the PPVM.
After the PPVM sets up the network, The agent issues command
“ssh -XC root@〈 internal IP of PPVM 〉 〈 application 〉”, which en-
ables the remote execution of commands inside the PPVM. In the

future, we will investigate hypervisor-supported mechanisms that
allow a PPVM to access the system display without requiring any
displayed data to pass through the Primary VM.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness, launch time, and

runtime overheads of our PPVM prototype. All experiments
were conducted on a host system with 24 Intel(R) Xeon(R) CPU
2.10GHz processor and 128GB of RAM, and running Debian
GNU/Linux 7.6 kernel version 3.17.2.

4.1 Effectiveness of memory isolation
We first demonstrate that PPVM successfully isolates the mem-

ory footprint of confidential applications for clean exclusion by the
checkpointing service in the hypervisor. We used the Firefox and
Chrome browsers, the MySQL database, and Gedit text editor as
sample confidential applications.

MySQL database server: We ran the MySQL server in a regu-
lar VM and connected to the MySQL server from an external ma-
chine. Executing the query “select * from employee;” gave the
following output:

Name Dept Jobtitle
Fred Quarry worker Rock Digger
Wilma Finance Analyst
Barney Sales Neighbor
Betty IT Developer

Next, we checkpointed the regular VM. As shown in Figure 6(a),
the snapshot contains the above contents listing all the users. We
then ran the MySQL server as a confidential application in a PPVM
by launching it via a confidential shell. We executed the same query
and then checkpointed the VM. As shown in Figure 6(b), the con-
fidential data about the employees could not be found in the snap-
shot.

Firefox, Chrome, and Geditor: We first ran Firefox in the Pri-
mary VM, entered URL “http://google.com”, typed string “strp-
pvmabc” in Google search engine, and checkpointed VM. Upon
searching the binary snapshot, the string appeared in the snapshot
1086 times. We then used the confidential shell to launch Fire-
fox in the PPVM, entered the same string in Google search engine,
and checkpointed the Primary VM. As expected, the string was not
found in the snapshot. Similar exclusion behavior was verified with
Chrome and Geditor.

4.2 Memory Overhead of PPVM
We wrote a simple memory-write-intensive application, which

repeatedly writes random numbers to 64MB memory sequentially,
to evaluate the memory overhead of PPVM. Figure 7 gives the total
amount of memory used by a single VM, PPVM implemented with
copy-on-write (COW), and PPVM implemented with VM replica-
tion (using pre-copy VM migration algorithm), when the memory-
write-intensive application runs inside either the VM or the PPVM.
In this experiment, all VMs are configured with 2 vCPUs and 4GB
memory. We measured Unique Set Size(USS) and Proportional Set
Size(PSS) using smem tool [40]. USS is the amount of unshared
memory that uniquely belongs to a process. PSS is the amount
of unshared and proportional shared memory (a proportion of the
shared memory divided by the total number of processes that share
the memory). The unique memory of the Primary VM and the

(a)

(b)

Figure 6: Memory snapshots when running the MySQL server in (a) Regular VM and (b) PPVM.

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

 900,000

Single_VM VM_Fork VM_Replication

 M
em

o
ry

 U
sa

g
e

(K
B

)

Shared memory
 Child unique
Parent unique

Figure 7: Memory usage of a single VM, PPVM with COW,
and PPVM with VM replication.

PPVM is measured via USS directly. The memory shared by the
Primary VM and the PPVM is measured as “ (Primary VM’s PSS -
Primary VM’s USS) + (PPVM’s PSS - PPVM’s USS)”. Our experi-
mental results show that, with copy-on-write, the memory usage of
the Primary VM and the PPVM together is slightly (less than 10%)
higher than that of a single VM. VM replication using precopy mi-
gration imposes around 60% overhead.

4.3 Launch Time of PPVM
Tables 1 and 2 give the time spent at each step to launch a PPVM

with different memory usage and vCPUs, respectively. The appli-
cation running inside the PPVM is a simple program that prints
a sequence of characters. The launch time of the PPVM is com-
puted as time2 − time1 in Figure 5. For both tables, the VMs
are configured with 4GB memory and the disk snapshot image size
is around 240MB. Before launching the PPVM, the Primary VM
does not run any other applications except the agent. In Table 1,
the memory used by the Primary VM (measured with “free -m")
ranges from 250MB to 2GB, and the VM is configured with two
vCPUS. In Table 2, the memory used by the Primary VM is fixed
(around 250MB), and the Primary VM is configured with different
number of vCPUs.

To control the memory usage, we create a tmpfs file system
mounted on directory /mnt/tmp. We then use dd command to cre-
ate files under /mnt/tmp with specific size. All files created under
that directory will be stored in the main memory. Before launching
the confidential application, we use “free -m" to check the memory
usage.

Our experimental results show that the VM stop time, CPU and
I/O migration time, and network set up time in the PPVM are rela-
tively stable regardless of the size of memory usage in the Primary
VM and the number of vCPUs. However, the memory copy-on-
write time increases linearly when the memory usage of the Pri-
mary VM increases because it takes longer time to reconstruct the
host page table entries for the PPVM (Figure 4). We also observed
that the VM resume time increases linearly when the number of
vCPUs increases. This is because vCPUs are implemented using

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

1G_Read1G_Write2G_Read2G_Write4G_Read4G_Write

 M
em

o
ry

 o
p

er
at

io
n

 t
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

 Standard VM
 PPVM

Figure 8: Comparison of memory read/write throughput be-
tween a single VM and the PPVM.

threads in QEMU and the operation to resume all vCPUs individu-
ally activates each thread.

4.4 Application Performance Overhead
This section compares the memory, CPU, and network perfor-

mance of applications running inside the standard VM and the
PPVM.

Memory read/write performance.
We used sysbench[42], a modular benchmark tool, to get the

performance of memory read/write operations. sysbench first al-
locates a memory block of a specified size and then performs
read/write operations on the allocated memory. The above pro-
cess is repeated until the total buffer size that has been read from
or written to reaches total memory size specified by the user. In
our experiments, VMs are configured with 2GB memory and 2 vC-
PUs. Memory block size is 1KB. The read/write operations are
performed sequentially. The number of threads is 1. Figure 8 com-
pares the memory read/write throughput with different total mem-
ory sizes (1GB, 2GB, and 4GB). The results show that the memory
read/write throughput is slightly less in PPVM than in the stan-
dard VM. This is because after VM fork, the extended page table
(EPT) is empty in PPVM initially and memory copy-on-write leads
to more page allocations for write operations.

CPU performance.
We used Kernbench [23] to compile Linux kernel 3.18.1 inside

the standard VM and the PPVM and compare the compilation time.
Both the standard VM and PPVM are configured with 4GB mem-
ory and various vCPUs. As shown in Figure 9, with different num-
bers of vCPUs, it takes almost the same time to compile the kernel
in the standard VM and in the PPVM.

Network performance.
We used Netperf [29] to measure the network bandwidth in

PPVM by running the Netperf client inside the PPVM and run-
ning the Netperf server on an external machine. The Netperf
client starts after the PPVM starts. We measured network band-
width for the host machine, the standard VM, the Primary VM,
and the PPVM, using options TCP_STREAM (netperf server re-

 0

 10

 20

 30

 40

 50

 60

2CPUs 4CPUs 6CPUs 8CPUs

 O
p

ti
m

al
 E

la
sp

ed
 T

im
e

(s
)

 Standard VM
 PPVM

Figure 9: Comparison of kernel compilation time using Kern-
bench between a single VM and the PPVM.

ceiving data from the client) and TCP_MAERTS (netperf server
sending data to the client). We also measured the TCP re-
quest/response performance using TCP_RR option, performance
of opening/closing TCP connection using TCP_CC option, and the
TCP connect/request/response performance using TCP_CRR op-
tion. The request/response performance is measured as “transac-
tions/sec”, which specifies the number of exchanges of requests
and responses every second. Both standard VM and Primary VM
are configured with 2GB memory and 2 vCPUs. The standard VM
uses unmodified QEMU and KVM code, while the Primary VM
uses our modified QEMU and KVM code. As Table 3 shows that,
compared to a standard VM, the Primary VM and the PPVM im-
pose negligible overhead on the network bandwidth, about 20%
overhead on TCP_RR and TCP_CC tests, and about 25% overhead
on TCP_CRR test. The latter overheads are related to the use of
NAT for network transparency in PPVM.

5. RELATED WORK
Previous work on minimizing data lifetime and object reuse has

focused on clearing the deallocated memory (also known as mem-
ory scrubbing) [11, 6, 41, 1]. However, memory scrubbing does
not solve the problem of confidential data being checkpointed be-
fore the pages are deallocated. Garfinkel et al. [12] developed a
hypervisor-based trusted computing platform, whose privacy fea-
tures include encrypted disks and the use of a secure counter to
protect against file system rollback attacks. Encrypting the check-
point has also been recommended in [14, 45]. However, selective
encryption of confidential application’s memory footprint in the
checkpoint is harder because of difficulties in exhaustively tracking
an application’s footprint in most modern operating systems. Addi-
tionally, encryption alone is not enough if the data should have been
quickly erased by the application after use (such as passwords, or
credit card numbers), but wasn’t, or if such data was lying around
in deallocated memory pages that should have been scrubbed by
the OS, but was not for performance reasons. If the VM is restored
from an encrypted checkpoint at some arbitrary point in the future,
the confidential data will be decrypted and loaded into the memory,
thus exposing such data again.

Work in [11] has proposed explicitly encrypting confidential data
in the memory and clearing such data after use by discarding the
key. However, since the confidential data remains part of the VM’s
memory, such data may still be exposed if VM checkpointing oc-
curs just after a program decrypts the data for use. Anonymous

Table 1: The launch time of PPVM with different memory usage. Primary VM is configured with two vCPUs and 4GB maximum
memory.

Memory VM stop Disk COW (ms) Migrating VM resume Network Launch
usage (MB) (ms) copy (ms) CPU/IO (ms) (ms) setup (ms) time (ms)
250 11.17 106 66.67 0.83 71.67 88.67 484.05
500 16.17 107 99.17 1 68.5 89.33 519.78
750 12.43 92.57 133.57 1 73.71 93.43 562.83
1000 15.67 94.33 181.5 1 70.83 94.17 615.29
1500 12.17 106.5 230.34 1 81.17 99.17 680.75
2000 15.29 101.29 284.57 1 66.71 96.57 727.67

Table 2: The launch time of PPVM with different number of vCPUs. Primary VM is configured with 4GB maximum memory and
250MB actual memory usage.

vCPU VM stop Disk COW (ms) Migrating VM resume Network Launch
(ms) copy (ms) CPU/IO (ms) (ms) setup (ms) time (ms)

2 11.17 106 66.67 0.83 71.67 88.67 484.05
4 12 107.83 61.5 1.33 164 102.33 694.90
6 12 107 74.67 1.5 232.67 111 855.15
8 16.17 111.83 62.5 1.67 329.83 107 1051.18

execution mode for applications has been proposed in [10] and
[33] so as to hide traces of an application’s execution after it ter-
minates. However, such approaches do not hide the confidential
data in memory during the execution of applications and hence do
not prevent such data from being checkpointed. Chen et al. [4]
proposed a VM-based system called Overshadow to protect confi-
dential application data. Overshadow enables secure execution of
applications even if the guest OS is compromised. To do so, Over-
shadow presents different views of application’s memory so that an
application can access memory storing the application’s data, but
the guest OS can only access the encrypted data. However, this
approach, does not prevent the confidential application data from
being checkedpointed by the hypervisor if VM checkpointing oc-
curs just after the application decrypts the data for use.

All the above approaches share a common weakness that the
confidential application’s memory remains part of the VM being
checkpointed. In contrast, PPVM is designed to explicitly isolate
the confidential application’s memory footprint, so it becomes eas-
ier to exclude such data during checkpointing.

Gofman et al. [15] developed techniques to exclude confiden-
tial data from being checkpointed. However, their approach
had to examine disparate memory locations in the VM’s ker-
nel, the virtual memory of the application, deallocated pages,
socket/pipe/FIFO/TTY buffers, device driver memory etc.. In con-
trast, PPVM helps avoid scrubbing process-specific information
from disparate locations. Hu et al. [18] presented an application-
level privacy-preserving virtual machine checkpointing mecha-
nism, which allows applications to control the granularity at which
their confidential data is excluded from VM checkpoints. This ap-
proach, however, requires the programmer to specify the location of
confidential data using application programmer interfaces (APIs),
and hence is not application-transparent. Ta-Min et al. [43] pro-
posed to partition system calls into trusted and untrusted. Untrusted
system calls are handled by the commodity OS, while the trusted
system calls are handled by the private OS. Doing so requires the
modification to applications. ARM TrustZone technology [2] pro-
posed “secure mode”, a special CPU mode for providing a trusted

execution environment with Cortex-A processors support. By acti-
vating the secure mode, applications can access physical resources
that are hidden in the non-secure mode. This approach also requires
the modification of applications.

A number of researchers have developed memory taint analysis
techniques to identify all memory locations storing the confidential
data. However, traditional memory taint analysis systems [5, 17,
30, 48] have a high performance overhead for large applications
due to the use of binary emulation or interpretation. Additionally,
even with taint tracking, selectively and safely excluding or en-
crypting the confidential application data from a checkpoint is ex-
tremely difficult requiring, from our experience, extensive changes
to the core operating system.

A recent trend is the use of Process Containers [8, 27, 20] as
a lightweight alternative to full system VMs. Containers provide
isolated execution for one or more user-level processes. The main
objective of containers is to restrict the resource usage, namespace,
and certain capabilities of the contained processes in order to pro-
tect the host system and other applications, such as through a sep-
arate filesystem, process address space, and superuser. However,
containers do not isolate the memory footprint of the contained
processes from the host system, the way PPVM does. Unlike con-
tainers, a PPVM does not restrict the capabilities of its contained
processes, except to control data transmission back to the parent
VM. Unlike processes in containers, PPVM processes share the
process namespace and all other capabilities available to processes
in the Primary VM. For instance, processes in a PPVM are under
the administrative control of the superuser of the Primary VM and
share the filesystem and network identity with other processes in
the Primary VM.

Prior research has also considered checkpointing and replaying
process execution as a means for intrusion detection, debugging,
process migration, and fault tolerance [3, 9, 21, 25]. However, none
of them examine the data lifetime implications of checkpointing.

Techniques for VM Fork that use copy-on-write for rapid VM
cloning have been explored in prior research including projects
such as SnowFlock [26] and Fargo [36]. We implemented our own

Table 3: Network bandwidth and request/response/connect performance.
Network Bandwidth (Mbps) Request/Response/Connect (Transaction/s)

TCP_STREAM TCP_MAERTS TCP_RR TCP_CC TCP_CRR
Host machine 941.33 941.36 8120.38 3880.81 3375.56
Standard VM 940.82 941.13 4841.56 2474.50 2004.31
Primary VM 939.63 940.62 4059.82 1983.79 1625.74

PPVM 939.35 940.63 4062.66 1963.62 1618.18

VM Fork mechanism in KVM/QEMU because no corresponding
implementation of VM Fork existed in the KVM/QEMU platform
that used copy-on-write to perform rapid VM cloning. Addition-
ally, to the best of our knowledge, no prior work has investigated
the specific optimizations that we introduce to speed up the mem-
ory and disk copy-on-write mechanism during a VM Fork, nor have
they examined the sharing of network identity between the parent
and child VMs and transparently controlling child VM’s processes
from the parent.

6. CONCLUSION
Virtualization technologies used in cloud platforms provide

inadequate support to identify and isolate the memory footprint
of specific applications. Consequently, services that need to
process or exclude confidential data, such as VM checkpointing or
encryption, are less effective. In this paper, we proposed a privacy
preserving virtual machine (PPVM) which facilitates clean and
exhaustive identification of a confidential application’s memory
footprint. PPVM is spawned by a parent VM using a lightweight
VM Fork operation which uses copy-on-write to reduce memory
and filesystem overheads on the host system. Confidential applica-
tions are executed within the PPVM, but transparently controlled
by the parent VM via a confidential shell. We demonstrate the
effectiveness of PPVM via a privacy-preserving checkpointing
mechanism which can safely exclude or encrypt the PPVM’s
memory while saving a snapshot of the parent VM’s memory.
Evaluations show that our PPVM implementation achieves effec-
tive memory isolation with low overheads on memory, CPU, and
network performance.

Acknowledgment This work is supported in part by the National
Science Foundation through grants CNS-0845832, CNS-1320689,
and CNS-1527338.

7. REFERENCES
[1] J. P. Anderson and R. Vaughn. A guide to understanding

object reuse in trusted systems. Technical report, DTIC
Document, 1992.

[2] ARM Limited. ARM Security technology: Building a Secure
System using TrustZone Technology. ARM White Paper
PRD29-GENC-009492C.

[3] M. Bozyigit and M. Wasiq. User-level process checkpoint
and restore for migration. SIGOPS Oper. Syst. Rev.,
35(2):86–96, 2001.

[4] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: A Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating Systems. In
Proc. of ASPLOS, 2008.

[5] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole

system simulation. In Proc. of USENIX Security Symposium,
2004.

[6] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum.
Shredding your garbage: reducing data lifetime through
secure deallocation. In Proc. of the USENIX Security
Symposium, 2005.

[7] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware analysis via hardware virtualization extensions. In
Proc. of CCS, pages 51–62, 2008.

[8] Docker Inc. https://www.docker.com/.
[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.

Chen. Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proc. of OSDI, 2002.

[10] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel. Eternal sunshine of the
spotless machine: Protecting privacy with ephemeral
channels. In Proc. of OSDI, 2012.

[11] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data
lifetime is a systems problem. In Proc. of ACM SIGOPS
European workshop. ACM, 2004.

[12] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for
trusted computing. In Proc. of SOSP, 2003.

[13] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Proc. of NDSS, 2003.

[14] T. Garfinkel and M. Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing
environments. In Proc. of HotOS, 2005.

[15] M. I. Gofman, R. Luo, P. Yang, and K. Gopalan. SPARC: A
security and privacy aware virtual machine checkpointing
mechanism. In Proc. of the ACM Workshop on Privacy in the
Electronic Society (WPES), 2011.

[16] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual machines.
Communications of the ACM, 53(10):85–93, 2010.

[17] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation. In
EuroSys, 2006.

[18] Y. Hu, T. Li, P. Yang, and K. Gopalan. An application-level
approach for privacy-preserving virtual machine
checkpointing. In The 6th IEEE International Conference on
Cloud Computing, research track, 2013.

[19] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. In Proc. of the ACM SOSP,
2005.

[20] P. Kamp and R. N. M. Watson. Jails: Confining the
omnipotent root. In Proc. 2nd Intl. SANE Conference, 2000.

[21] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proc. of USENIX Annual Technical Conference, pages 1–15,
2005.

[22] A. Kivity, Y. Kamay, and D. Laor. kvm: the Linux Virtual
Machine Monitor. In Proc. of Ottawa Linux Symposium,
2007.

[23] C. Kolivas. Kernbench:
http://ck.kolivas.org/apps/kernbench/kernbench-0.50/.

[24] K. Kourai and S. Chiba. Hyperspector: Virtual distributed
monitoring environments for secure intrusion detection. In
ACM/USENIX International Conference on Virtual
Execution Environments, pages 197 – 207, 2005.

[25] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In Proc. of ACM SIGMETRICS, 2010.

[26] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. In Proc. of Eurosys, 2009.

[27] Linux Containers. https://linuxcontainers.org/.
[28] Microsoft Corp. Hyper-v server 2008 r2. http:

//www.microsoft.com/hyper-v-server/en/us/overview.aspx.
[29] Netperf. http://www.netperf.org/netperf/.
[30] J. Newsome and D. Song. Dynamic taint analysis for

automatic detection, analysis, and signature generation of
exploits on commodity software. In Network and Distributed
System Security Symposium (NDSS), 2005.

[31] A. M. Nguyen, N. Schear, H. Jung, A. Godiyal, S. T. King,
and H. D. Nguyen. MAVMM: Lightweight and Purpose
Built VMM for Malware Analysis. In Annual Computer
Security Applications Conference, pages 441–450, 2009.

[32] D. A. S. d. Oliveira and S. F. Wu. Protecting kernel code and
data with a virtualization-aware collaborative operating
system. In Annual Computer Security Applications
Conference, pages 451–460, 2009.

[33] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda.
Privexec: Private execution as an operating system service.
In Proceedings of the 34th IEEE Symposium on Security and
Privacy, 2013.

[34] Oracle Corp. Virtualbox. www.VirtualBox.org.
[35] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An

architecture for secure active monitoring using virtualization.
In IEEE Symposium on Security and Privacy, pages 233 –
247, 2008.

[36] Project Fargo. http://www.yellow-
bricks.com/2014/10/07/project-fargo-aka-vmfork-what-is-it/.

[37] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention
of kernel rootkits with VMM-based memory shadowing. In
the 11th international symposium on Recent Advances in
Intrusion Detection, pages 1–20, 2008.

[38] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained
binary instrumentationwith applications to taint-tracking. In
Proceedings of International Symposium on Code
Generation and Optimization, 2008.

[39] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny
hypervisor to provide lifetime kernel code integrity for
commodity oses. In ACM SIGOPS Operating Systems
Review, volume 41(6), pages 335–350. ACM, 2007.

[40] Smem memory reporting tool. http://selenic.com/smem.
[41] D. A. Solomon and M. Russinovich. Inside Microsoft

Windows 2000. Microsoft Press, 2000.
[42] Sysbench. https://wiki.gentoo.org/wiki/sysbench.
[43] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making

trust between applications and operating systems
configurable. In Proc. of Operating Systems Design and
Implementation, 2006.

[44] VMware Inc. http://www.vmware.com/.
[45] VMware Inc. VMWare Ace Virtualization Suite.

http://www.vmware.com/products/ace/.
[46] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,

A. Snoeren, G. Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual honeyfarm. SIGOPS
Operating Systems Review, 39(5):148–162, 2005.

[47] Xen Hypervisor. http://http://www.xen.org/.
[48] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall.

Tainteraser: Protecting sensitive data leaks using
application-level taint tracking. SIGOPS Oper. Syst. Rev.,
45(1):142–154, Feb. 2011.

