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Abstract

Modern grid computing and enterprise applications increas
ingly execute on clusters that rely upon virtual machinesgy
to partition hardware resources and improve utilizatiofi@éncy.
These applications tend to have memory and 1/O intensivé&-wor
loads, such as large databases, data mining, scientific lvads,

commodity high-speed clusters.

However, such applications tend to have memory and 1/O in-
tensive workloads that can stress the limited resourcesirwi
single VM by demanding more memory than the slice available
to the VM. Clustered bastion hosts (mail, network attached s
age), data mining applications, scientific workloads ualtprivate
servers, and backend support for websites are common exampl

and web services, which can strain the limited 1/O and memory Of resource-intensive workloads. I/O bottlenecks canidyiorm

resources within a single VM. In this paper, we present opeex
ences in developing a fully transparent distributed systeatied

due to frequent access to large disk-resident datasetifnegag-
ing activity, flash crowds, or competing VMs on the same node.

MemX, within the Xen VM environment that coordinates the use Even though virtual machines with demanding workloads are h

of cluster-wide memory resources to support large memody an
1/0 intensive workloads. Applications usiMemX do not require
specialized APIs, libraries, recompilation, relinking; dataset
pre-partitioning. We compare and contrast the differensige
choices inMemX and present preliminary performance evalua-
tion using several resource-intensive benchmarks in bisthal-
ized and non-virtualized Linux. Our evaluations show tlzagé
dataset applications and multiple concurrent VMs achidgeif
icant speedups usinlylemX compared against virtualized local

to stay as integral parts of modern clusters, significantrave-
ments are needed in the ability of memory-constrained VMs to
handle these workloads.

I/O activity due to memory pressure can prove to be particu-
larly expensive in a virtualized environment where all I/@eca-
tions need to traverse an extra layer of indirection. Owmrigion-
ing of memory resources (and in general any hardware respurc
within each physical machine is not a viable solution asritlead
to poor resource utilization efficiency, besides incregsire oper-

and iSCSI disks. As an added benefit, we also show that live Xerational costs. Although domain-specific out-of-core cotapian

VMs usingMemX can migrate seamlessly without disrupting any
running applications.

1. Introduction

In modern cluster-based platforms, Virtual Machines (VMs)
can enable functional and performance isolation acrosicapp
tions and services. VMs also provide greater resourceatlmt
flexibility, improve the utilization efficiency, enable sekess load
balancing through VM migration, and lower the operatiormeatof
the cluster. Consequently, VM environments are increagsing-
ing considered for executing grid and enterprise appbcatiover
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techniques [13, 15] and migration strategies [19, 2, 6] dan a
improve the application performance up to a certain extiety
do not overcome the fundamental limitation that an appbcais
restricted to using the memory resources within a singlesicy
machine.

In this paper, we present the design, implementation, aald ev
uation of theMemXsystem for VMs that bridges the 1/O perfor-
mance gap in a virtualized environment by exploiting lowetecy
access to the memory of other nodes across a Gigabit clivgenX
significantly reduces the execution times for memory andit'O
tensive large dataset applications, provides support faltipte
concurrently executing VMs to utilize cluster-wide memaapnd
even supports seamless migration of live VMs with large ngmo
workloads. MemXis fully transparent to the user applications —
developers do not need any specialized APls, librariesnneda-
tion, or relinking for their applications, nor does the aggiion’s
dataset need any special pre-processing, such as datiopant
across nodes.

We compare and contrast the three modes in wMemXcan
operate with Xen VMs [4], namely, (1) within non-virtualie
Linux (MemXLinux), (2) within individual guest OSedMemX
DomU), and (3) within a common driver domaiémXxDD) shared
by multiple guest OSes. We demonstrate, via a detailed atiaiu
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Figure 1. Split Driver Architecture in Xen.

Figure 2. MemXxLinux: Baseline operation of
MemXin a non-virtualized Linux environment.
using several 1/O intensive and large memory benchmarkg, th
these applications achieve significant speedups using/graX
system when compared against virtualized disk-based If@. T ) ) ) )
proposed techniques can also work with other VM technotogie 9drant table in device 1/0 is to provide a fast and secure mecha

besides Xen. We focus on Xen mainly due to its open source avai Nism for unprivileged domains (DomUs) to receive indiremtess
ability and para-virtualization support. to hardware devices. They enable the driver domain to set up a

DMA based data transfer directly to/from the system memdgy o
DomuU rather than performing the DMA to/from driver domain’s

2. Split Driver Background memory with the additional copying of the data between DomuU
and driver domain.
Xen is a virtualization technology that provides close ttvea The grant table can be used to either share or transfer pages
machine performance through the usepafa-virtualization— a between the DomU and driver domain depending upon whether

technique by which the guest OS is co-opted into reducingithe ~ the 1/O operation is synchronous or asynchronous in nattice.
tualization overhead via modifications to its hardware dejpet ~ €xample, block devices perform synchronous data transfat,
components. In this section, we review the background oXge is, .the driver domain knows at the time Qf I/O initiation as to
I/0 subsystem as it relates to the desigivieimX Xen exports /O Which DomU requested the block I/O. In this case the frontend
devices to each guest OS as virtualized views of “class’agayi  the block driver in DomU will notify the Xen hypervisor (viaé

as opposed to real physical devices. For example, Xen export 9nttab_grant _forei gn_access hypercall) thata memory

a block device or a network device, rather than a specific-hard Page can be shared with the driver domain. The DomU thenpasse
ware make and model. The actual drivers that interact wigh th @ grant table reference ID via the event channel to the ddwer
native hardware devices can either execute within Dom0 4va pr Main, which sets up a direct DMA to/from the memory page of the
ileged domain that can directly access all hardware in tseegy ~ DomU. Once the DMA is complete, the DomU removes the grant

— or within Isolated Driver Domains (IDD), which are essalyi ~ reference (viathgnt t ab_end_f or ei gn_access call).
driver specific virtual machines. IDDs require the abilibyHide On the other hand, network devices receive data asynchsnou
PCI devices from Dom0 and expose them to other domains. In thethat is, the driver domain does not know the target DomU for an
rest of the paper, we will use the temniver domainto refer to ~ incoming packet until the entire packet has been receivedtan
either DomoO or the IDD that hosts the native device drivers. header examined. In this situation, the driver domain DM# t
Physical devices can be multiplexed among multiple concur- Packet into its own page and notifies the Xen hypervisor (véa t
rently executing guest OSes. To enable this multiplexine piriv- gnttab_grant _foreign_transfer call) thatthe page can
ileged driver domain and the unprivileged guest domainsi{Dp be transferred to the target DomU. The driver domain themstra

communicate by means of a split device-driver architecsievn fers the received page to target DomU and receives a freeipage
in Figure 1. The driver domain hosts thackendbf the split driver return from the DomU.

for the device class and the DomU hosts filemtend The back-

ends and frontends interact using_h_igh-level d_evice attsoras in- 3. Des gn and | mplementation

stead of low-level hardware specific mechanisms. For exanapl
DomuU only cares that it is using a block device, but doesnitrwo
about the specific type of block device.

Frontends and backends communicate with each other via the®
grant table — an in-memory communication mechanism that en-
ables efficient bulk data transfers across domain bourslafikee 3.1 MemxLinux
grant table enables one domain to allow another domain tsacc
its pages in system memory. The access mechanism can include Figure 2 shows the operation dMemXLinux, i.e., MemXin
read, write, or mutual exchange of pages. The primary uskeof t a non-virtualized (vanilla) Linux environmenkiemXLinux pro-

Here we discuss different design alternativesMi@mX justify
ur decisions, and present implementation details.
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vides several new features compared to its predecessor BE2] DOMAIN

low we summarize the architectureemXLinux for complete- EVENT CHANNELS
ness and use it as a baseline for comparison with other kirtua VNIC

ized versions oMemX which are the primary focus of this paper. BE/?“CDK

Two main components dflemXLinux are theclient moduleon
the low memory machines and teerver modul@n the machines
with unused memory. The two communicate usirrgraote mem-
ory access protocqlRMAP). Both client and server components
execute as isolated Linux kernel modules.
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to the large dataset applications executing on the cliemhina.
This block device can either be configured as a low-latengy pr

mary swap device, or treated as a low-latency volatile store

large datasets accessed via the standard file-systemaaeidr ] ) ]
memory mapped to the the address space of an executing large Figure 3. MemxDomuU: Inserting MemX client
memory application. To the rest of the client system, thelklo module within DomU’s Linux kernel. Server
device appears to be a simple 1/O partition with a linear ip@ce executes in non-virtualized Linux.

that is no different from a regular disk partition, excefgttthe ac-
cess latency happens to be over an order of magnitude sriater
disk. Internally, however, the client module maps the sriglear
1/0 space of the block device to the unused memory of multgle
mote servers, using a memory-efficient radix-tree basegpmgp
The client module also bypasses a standard request-qualmme
nism used in Linux block device interface, which is normaibed
to group together spatially consecutive block I/Os on dighis

is because, unlike physical disks, the access latency tofsgt
within this block device is almost constant over a gigabitN,A
irrespective of the spatial locality. The client moduleoatentains

a small bounded-sized write buffer to quickly service wiif@
requests.

—
TO/FROM REMOTE MEMORY SERVER:

wanted protocol processing. For instanksmXdoes not require
TCP’s features such as byte-stream abstraction, in-owelaedy,
or congestion control. Nor does it require IP routing fuoctility,
being a single-subnet system. Thus RMAP bypasses the TCP/IP
protocol stack and communicates directly with the netwakick
driver. Every RMAP message is acknowledged except for soft-
state and dynamic discovery messages. All client nodes &eep
fixed-size window to control the transmission rate, whictrkso
well for purely in-cluster communication. Another consiaon
is that while the standard memory page size is 4KB (or songtim
8KB), the maximum transmission unit (MTU) in traditionalhEt
ernet networks is limited to 1500 bytes. Thus RMAP impleraent
Server Module:. ) . dynamic fragmentation/reassembly for page transfer ¢rafildi-

A server module stores pages in memory for any client node tionally, RMAP also has the flexibility to uskimbo frameswhich
across the LAN. The server modules do not have any externally 5,¢ packets with sizes greater than 1500 bytes (typicathyden

visible interface on the server machines, except for bagializa- 8KB and 16KB), that enable transmission of complete 4KB page
tion and control. They communicate with clients over thevoek using a single packet.

using a custom-designeemote memory access proto¢BMAP) MemXalso includes several additional features that are not the
that is described later. Servers broadcast periodic resoam- specific focus of this paper. These include a soft-stateshfr

nouncement messages which the client modules can use to dismechanism for tracking liveness of clients and serversgséoad
cover the.avallable memory servers. Serverg also inclustibick balancing, reliability, named remote memory data spabes can
about their memory availability and load during both reseuan- be shared by multiple clients, and support for multiple kide-
nouncement as well as regular page transfers with clienteri/é vice minor numbers by a single client module (important io-pr

server reaches capacity, it declines to serve any new Vegieasts  yiging remote memory access to multiple DomUs in virtualize
from clients, which then try to select another server, ifilalde, environment).

or otherwise write the page to disk. The server module is also
designed to allow a server node to be taken down while live; ou
RMAP implementation cadisperse, re-map, and load-balanae
individual server’s pages to any other servers in the cliktt are
capable of absorbing those pages, allowing the server tasim

3.2 MemxDomU (Option 1): MemX Client
Module in DomU

without killing any of its client’s applications. In order to support memory intensive large dataset applica-
tions within a VM environment, the simplest design optionids
Remote Memory Access Protocol (RMAP). place theMemX client module within the kernel of each guest

RMAP is a tailor-designed light-weight window-based rela ~ OS (DomU), whereas remote server modules continue to execut
datagram protocol for remote memory access within the satme s Within non-virtualized Linux kernel. This option is illustted in
net. It incorporates the following features: (1) ReliabcRet ~ Figure 3. The client module exposes the block device interfar
Delivery, (2) Flow-Control, and (3) Fragmentation and Rems- large memory applications within the DomU as in the basebuoe
bly. While one could technically communicate over TCP, UBP, communicates with the remote server using the virtualized n

even the IP protocol layers, this choice comes burdenedwrith ~ WOrK interface (VNIC) exported by the network driver domain
The VNIC in Xen is organized as a split device driver in whikh t
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Figure 4. MemxDD: A shared MemX client
within a privileged driver domain multiplexes
I/0 requests from multiple DomUs.

frontend (residing in the guest OS) and the backend (regiiin
the network driver domain) talk to each other using welluedi

within a block driver domain (Dom0) and allow multiple DomUs
to share this common client module via their virtualizedcklde-
vice (VBD) interfaces. This option is shown in Figure 4. The
guest OS executing within the DomU does not require ieynX
specific modifications. ThlemXclient module executing within
the driver domain exposes a block device interface, as éefory
DomU, whose applications require remote memory resoucoes,
figures a split VBD. The frontend of the VBD resides in DomU
and the backend in the block driver domain. The frontend and
backend of each VBD communicates using event channels and th
grant table, as in the earlier case of VNICs. ThemXclient mod-

ule provides a separate VBD lettered-slice (/devimemxéd, letc.)

for each backend that corresponds to a distinct DomU. Onetie n
work side, theMemXclient module attaches itself to the driver
domain’s VNIC which in turn talks to the physical NIC via the
virtual network bridge. For performance reasons, here warae
that the network driver domain and disk driver domain are co-
located within a single privileged domain (such as DomO)usTh
the driver domain’s VNIC does not need to be organized asanot
split driver. Rather it is a single software construct theat attach
directly to the virtual network bridge. During executiontin

a DomU, read/write requests to remote memory are genenated i
the form of synchronous I/O requests to the correspondin’s¥B
frontend. These requests are sent toNtemmXclient module via

grant table and event channel mechanisms. Two event ctsannel the event channel and the grant table. The client moduleggsk
are used between the backend and frontend of the VNIC — one foreach 1/0 request into network packets and transmits them- asy

packet transmissions and one for packet receptions. Tomerf
zero-copy data transfers across the domain boundarie¥NHe

chronously to remote memory servers using RMAP.
Note that, although the network packets still need to trser

performs a page exchange with the backend for every packet re the virtual network bridge, they no longer need to traverspla

ceived or transmitted using the grant table. All backendrfates
in the network driver domain can communicate with the plaisic
NIC as well as with each other via a virtual network bridgeclita
VNIC is assigned its own MAC address whereas the driver do-
main’s VNIC (in DomQ) uses the physical NIC's MAC address.
The physical NIC itself is placed in promiscuous mode by Xen’
driver domain to enable the reception of any packet adddetese
any of the local virtual machines. The virtual bridge deripldixes
incoming packets to the target VNIC’s backend driver.
Compared to the baseline non-virtualizZe®mXdeployment,
MemXDomuU has the additional overhead of requiring every net-
work packet to traverse across domain boundaries in additio
being multiplexed or demultiplexed at the virtual networidige.
Additionally, the client module needs to be separately riese
within each DomU that might potentially execute large megmor
applications. Also note that each 1/O request is typicakpytes
(or sometimes 8KBytes) in size, whereas network hardwaes us
a 1500-byte MTU (maximum transmission unit), unless the un-
derlying network supports Jumbo frames. Thus the clientuteod
needs to fragment each 4KByte write request into (and redsse
a complete read reply from) at least 3 network packetslémx

VNIC architecture, unlike ilMemXxDomU. One consequence of
not going through a split VNIC architecture is that, whiléaokt
module still needs to fragment a 4KByte 1/0 request into 3 net
work packets to fit the MTU requirements, each fragment ngdon
needs to occupy an entire 4KByte buffer, unlikeMemXxDomU.

As aresult, only one 4KByte I/O request needs to cross theadom
boundary across the split VBD driver, as opposed to three 4KB
packet buffers ilMemXxDomU. Secondly, th&emXclient mod-
ule can be inserted once in the driver domain and still beeshar
among multiple DomUs. Finally, since the guest OS within Do-
mUs do not require anlemXspecific software components; the
DomUs can potentially run any para-virtualized OS and nst ju
XenoLinux.

However, compared to the non-virtualized baseline ddsenx
DD still has the additional overhead of using the split VBOlan
the virtual network bridge. Also note that, unlikéemxDomU,
MemXDD does not currently support seamless migration of live
Xen VMs using remote memory. This is because part of the guest
internal state (page-to-server mappings) that resideseirtiver
domain ofMemXDD is not automatically transferred by the mi-
gration mechanism in Xen. We plan to enhance Xen’'s migra-

DomuU each fragment needs to traverse the domain boundary totion mechanism to transfer this internal state in a hosejiethident

reach the the backend. Due to current memory allocation poli

cies in Xen, buffering for each fragment ends up consuming an

entire 4KByte page worth of memory allocation, i.e., thrieess
the typical page size. We will contrast this performanceriosad
in greater detail wittMemXDD option below.

3.3 MemxDD (Option 2): MemXClient Mod-
ule in Driver Domain

A second design option is to place tMemXclient module

manner to the target machinéd&emXxDD module.

3.4 (Option 3): Memx Server in DomU

Technically speaking, we can also execute kihemXserver
module within a guest OS, coupled with Options 1 or 2 above.
This could enable one to initiate a VM solely for the purpo$e o
providing remote memory to other low-memory client VMs that
are either across the cluster or even within the same phys&@a
chine. However, practically, this option does not seem tviple



any significant functional benefits whereas the overheads®f

cuting the server module within a DomU are considerable. The

bottom-line is that equivalent remote memory functioyati&n be
provided more efficiently by &MemXserver module running in a
non-virtualized environment. Consequently, we do not peithis
option further.

3.5 (Option 4): Expanding the Pseudo-
physical Address Space of Guest OS

Another alternative to supporting large memory appligatio

with remote memory is to enable the guest OS to view a IargeEm
(3]

pseudo-physicainemory address space than the available physi
cal memory within the local machine. This option would requi
fundamental modifications to the memory management in iheth t
Xen hypervisor as well as the guest OS. In particular, at bow,

the guest OS would believe that it has a large “physical” mem-
ory — or the so called pseudo-physical memory space.

pseudo-physical address space partly into local physieahony,
partly into remote memory, and the rest to secondary stoiEge
is analogous to the large conventional virtual addressespeail-
able to each process that is managed transparently byidraadit
operating systems. The functionality provided by this apis es-
sentially equivalent to that provided bemXxDomU andMemX
DD. However, this option requires the Xen hypervisor to tage
prominent role in memory address translation process, songe
that original design of Xen strives to minimize. This optiaiso
runs the risk of paying a significant penalty fimuble (page) faults
— the situation where the paging daemon in DomU mistakenly at

tempts to swap out a page that already resides on a swap device

managed by the hypervisor (or vice-versa), resulting intéinget
page being brought into physical memory and getting swappéed

of the system again immediately. The above problems can-be al

leviated to some extent if hardware support for nested paigles
were available. Due to the above limitations and lack of fiomal
benefits, we do not pursue this option further.

4. Performance Evaluation

In this section we evaluate the performance of the different
variants ofMemX Our testbed consists of eight machines, each
having 4 GB of memory, 64-bit dual-core 2.8 Ghz processat, an
Gigabit Broadcom Ethernet NIC. Our Xen version is 3.0.4 and
XenoLinux version 2.6.18. BackerddemXservers run on vanilla
Linux 2.6.20. Collectively, this provides us with over 24@Bef-
fectively usable cluster-wide memory after accountingéarghly
1GB of local memory usage per node. The local memory of client
machines is either 512MB or 1GB in all tests. The client medul

of Requests
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It then
becomes the Xen hypervisor’'s task to map each DomU’s large
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Figure 5. Sequential/random read latency dis-
tributions.

“disk” baseline refers to virtualized disk within DomO, whiis
exported as a VBD to guest-VMs.

4.1 Microbenchmarks

Table 1 compares differeMemXcombinations and virtual disk
in terms of latency and bandwidth. RTT is the average rouipd tr
time for a single 4KB read request fromMiemXclient to a server,
measured in kernel using the on-chip time stamp counter JTSC
This is the latency that the I/O requests from the VFS (virtua
filesystem) or the system pager would experiefdemXLinux,
as a base case, provides an RTT ofi85Following close behind
are MemxDomO, MemXDD, and MemXDomU in that order.
The virtualized disk base case performs as expected at aagave
8.3ms. These RTT numbers show that accessing the memory of re
mote machine over the network is about two orders of mageitud
faster than from local virtualized disk. Also, the Xen VMM-in
troduces negligible overhead of 19in MemXDom0 andViemX
DD over MemXLinux. Similarly the split network driver archi-
tecture, which needs to transfer 3 packet fragments for 4&&h
block across the domain boundaries, introduces an overbead
another 2@s inMemXxDomU overMemXDom0 andVlemX*DD.

is implemented in about 2600 lines of C code and server module Bandwidth measurements are performed using a custom bench-

in about 1600 lines, with no changes to either the core Liranx k
nel or the Xen hypervisor. Our current implementation wankly
with para-virtualized Xen guests. In addition to the thkéemX
configurations described earlier, namilgmXLinux, MemXxDomU,
andMemxDD, we also include a fourth configurationMemX
Dom0 - for the sole purpose of baseline performance evaluati
This additional configuration corresponds to kiiemXclient mod-
ule executing within DomO itself, but not as part of the back-
end for a VBD. Rather, the client module MemXDomO serves
large memory applications executing within Dom0. Furthemren

mark which issues a stream of sequential asynchronous 4BB |/
requests, with the the range of 1/O offsets being at leastettie
size of client memory. We observe that the bandwidth reduocti
for MemxDD and andMemXDomU is small over the baseline
— about 35Mbps foMemXDD and 98Mbps folMemXxDomU.
Virtual disk bandwidth trails far behind all the variantsMémX
Figure 5 compares the read latency distribution for a uset le
application that performs either sequential or random IfCeb
therMemXor the virtual disk. Random read latencies are an order
of magnitude smaller wittMemXDD (around 16@s) than with



MemX | MemX | MemX [ MemX | Virtual
Linux DomO DD DomU Disk
RTT (us) 85 95 95 115 8300
Write b/w (Mbps) | 950 950 915 852 295
Read b/w (/bps) 916 915 915 840 295

Table 1. Latencv and bandwidth comparison.
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Figure 6. Quicksort execution times vs. prob- Figure 7. Quicksort execution times for multi-
lem size. ple concurrent guest VMs using  MemxDD and

iISCSI configurations.

disk (around 9ms). Sequential read latency distributioassani-

lar forMemXDD and disk primarily due to filesystem prefetching. tion called POV-ray [22], (2) Integer Sort (IS-NPB) benchiknin
RTT distribution for buffered write requests (not showny aim- the NAS Parallel Benchmark (NPB) suite [21], (3) Datacub€{D
ilar for both MemXDD and disk, mostly less than 48 due to NPB) benchmark in the NPB suite, (4) Sql-bench [20] benclkmar
write buffering. Note that these RTT-values are measurethfr  on anysql database that is stored in either remote memory or
user-level, which adds a few tens of microseconds to theekern virtual disk, (5) NS2 [17] — the popular network simulatiaot

level RTTs in Table 1. that is used to simulate a delay partitioning algorithm onrtep
wide-area network path, and (6) Quicksort again on a 5GBsdata
4.2 Application Speedups Again, both theMemXcases outperform the virtual disk case for

each of the benchmarks. Note that the performance overHead o

We now evaluate the execution times of a few large memory MemXDD versusMemXLinux is substantially higher at appli-
applications using our testbed. Again, we incluzeth MemX cation level (up to 80%) when compared against the kernvel-le
Linux and virtual disk as base cases to illustrate the owathe Mmicrobenchmarks in Table 1 (about 11%), primarily becabse t
imposed by Xen virtualization and the gain over the virtzed former include additional overheads due to Xen I/O subsyste
disk respectively. Figure 6 shows the performance of a \amgel paging subsystem, and user-kernel crossings. .
sort of increasingly large arrays of integers, using a C @nmgn-
tation of Quicksort. We also include a base case plot for pure 4.3 Multiple Client VMs
in-memory sorting using a vanilla-Linux 4 GB node. From the
figure, we ceased to even bother with the disk case beyond 2GB In this section, we evaluate the overhead of executing plalti
problem sizes due to the unreasonably large amount of time itclient VMs usingMemXDD. In most data centers or grid clusters,
takes to complete, potentially for days. The sorts udtemx a high-speed backend interconnect, such as iSCSI or FibreCh
DD, MemXdomU, andMlemXLinux however finished within 100  nel, would provide backend storage for guest VMs. To emulate
minutes, where the distinction between the different maslesry this base case in our cluster, we use five dual-core 4GB memory
small. Also note that performance is still about 3 timesdagthen machines to evaluatéemXDD in a 4-disk parallel iISCSI setup.
using local memory, than with MemX, and consequently there i We used the open source iSCSI target software from IET [28] an
room for a cluster load balancer to do a better job at placifgsV  the initiator software from open-iscsi.org within Dom0 adraver
with large memory footprints on nodes that have more locahme  domain for all the Xen Guests. One of the five machines exe-
ory. Table 2 lists the execution times for much larger proble cuted up to twenty concurrent 100MB Xen Guests, each hoating
sizes including (1) ray-tracing based graphics renderpgica- 400MB Quicksort application. We vary the number of concotre



Appli- Mem Client | Memx | MemX | Virtual
cation Size Mem Linux DD Disk
Quicksort| 5GB [ 512MB | 65min | 93 min | > 10 hrs
Povray | (6GB) | 512MB | 48 min | 61 min | > 10 hrs
Povray | (13GB)| 1GB 93 min | 145 min| > 10 hrs
IS-NPB | (6GB) | 512 MB | 83 min | 126 min| > 10 hrs
DC-NPB | (10GB) [ 1GB | 152min| 217 min| > 10 hrs
sql-bench| (4GB) | 512 GB | 114 min | 208 min | > 10 hrs

NS2 (5GB) 1GB | 175 min| 228 min| > 10 hrs

Table 2. Execution time comparisons for various large memor

guest VMs from 1 to 20, and in each guest we run Quicksort to
completion. We perform the same experiment for ddgmXxDD

and iSCSI. Figure 7 shows that at about 10 GB of collective mem
ory and 20 concurrent virtual machines the execution timé wi
MemXDD is about 5 times smaller than with iISCSI setup. Recall

y application workloads.

eral prior efforts have focused upon remote memory accessin
virtualized environment, 10, 16, 18, 11, 12, 24, 8]. Distributed
shared memory (DSM) systems [9, 1] allow a set of independent
nodes to behave as a large shared memory multi-processam, of
requiring customized programming to share common datasacro

that we are using four remote iSCSI disks, and one can observenodes. We are unaware of any DSM systems to date that work ef-

a stair-step behavior in the iISCSI curve where the level odlpa
lelism reaches 4, 8, 12, and 16 VMs. Even with concurrentsdisk
and competing virtual machine CPU activiljemXDD provides
clear performance edge.

4.4 Live VM Migration

MemXxDomU configuration has a significant benefit when it
comes to migrating live Xen VMs [6] to better utilize resoesc
even thoughMemXDD has higher bandwidth and lower I/O la-
tency tharMemXDomU. Specifically, a VM usinglemXxDomU
can be seamlessly migrated from one physical machine thanot
without disrupting the execution of any memory intensiveyéa
dataset applications within the VM. First, sinkiemXxDomuU is
designed as a self-contained pluggable module within thestgu
OS, any page-to-server mapping information is migratecglo
with the kernel state of the guest OS without leaving anydresi
dependencies behind in the original machine. Second reiason
that RMAP used for communicating read-write requests totem
memory is designed to be reliable. As the VM carries withlfitse
its link layer MAC address identification during the migaatipro-
cess, any in-flight packets dropped during migration arelypaé-
transmitted to the VM's new location. As a preliminary eatlan,
we conducted an experiment to compare the live VM migration
performance using iISCSI versieemxDomU. For the iISCSI ex-

ficiently and transparently within a virtualized environmheKer-
righed [14] and vNuma [5] implement a single system image on
top of multiple workstations using DSM techniques. However
they do not target support for multiple concurrent VMs, sash
Xen guests.

Techniques also exist to migrate applications [19] or entivis
[2, 6] to nodes that have more free resources (memory, CPU) or
better data access locality. Both Xen [6] and VMWare [2] sup-
port migration of VMs from one physical machine to another, f
example, to move a memory-hungry enterprise applicatiom fa
low-memory node to a memory-rich node. However large memory
applications within each VM are still constrained to exeauithin
the memory limits of a single physical machine at any tinhe.
fact, we have shown in this paper thdemX can be used in con-
junction with the VM migration in Xen, combining the benedits
both live VM migration and remote memory acceB¥OSIX [3]
is a management system that uses process migration to dlkow s
ing of computational resources among a collection of nodgesf,
in a single multiprocessor machine. However each procestsllis
restricted to use memory resources within a single machine.

Another approach is to develop domain specific out-of-core
computation techniques such as [13, 15]. Out-of-core mwist
tend to be highly application specific, requiring new altforis for
each new application domain. These techniques, while axgl
ing in themselves, divert the efforts of the applicationelepers

periment, we configured a single iISCSI disk as swap space: Sim from the core functionality of the application itself. Atithgh both

ilarly, for the MemXxDomU case, we configured the block device

exported by client module as the swap device. In both configu-

rations, we ran 1GB Quicksort within a 512 MB guest. The live
migration took an average of 26 seconds to complete in th&iSC
setup whereas it took 23 seconds wilemXxDomU. While fur-
ther evaluation is necessary, this preliminary experinpeirts to
potential benefits of usinglemXxDomU.

5. Redated Work

To the best of our knowledg&jemXis the first system ina VM
environment that provides unmodified large memory appboat
with a completely transparent and virtualized access teteit
wide remote memory over commodity gigabit Ethernet LANs/-Se

out-of-core techniques and migration can alleviate theblé@le-
neck to a limited extent, they do not overcome the fundanhenta
limitation that an application is restricted to the memovgikable
within a single machineMemXprovides an alternative, and per-
haps even a complement, to both approaches by enablingarans
ent use of cluster-wide memory resources.

6. Conclusions

State-of-the-art in virtual machine technology does nat-ad
quately address the needs of memory and I/O intensive waxiklo
that are increasingly common in modern grid computing and en
terprise applications. In this paper, we presented thegdesn-
plementation, and evaluation of tMemXsystem in the Xen envi-



ronment that enables memory and 1/O intensive VMs to transpa

ently utilize the collective pool of memory across a clustarge
dataset applications usifgemXdo not require any specialized
APIs, libraries, or any other modificationglemXcan operate as a
kernel module within non-virtualized LinusMemXLinux), an in-
dividual VM (MemXDomU), or a shared driver domaiMémX
DD). Preliminary evaluations of ouvlemXprototype using sev-
eral different benchmarks shows that I/0 latencies arecesdiby

an order of magnitude and that large memory applicationsdspe

up significantly when compared to virtualized disk. Additédly,
live Xen VMs executing large memory applications okemX
DomU can be migrated without disrupting applications. Omy 0
going work includes the capability to provide per-VM ressions
over the cluster-wide memory, and enabling seamless riograt
VMs in the driver domain mode of operation.
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