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Abstract

Modern grid computing and enterprise applications increas-
ingly execute on clusters that rely upon virtual machines (VMs)
to partition hardware resources and improve utilization efficiency.
These applications tend to have memory and I/O intensive work-
loads, such as large databases, data mining, scientific workloads,
and web services, which can strain the limited I/O and memory
resources within a single VM. In this paper, we present our experi-
ences in developing a fully transparent distributed system, called
MemX, within the Xen VM environment that coordinates the use
of cluster-wide memory resources to support large memory and
I/O intensive workloads. Applications usingMemX do not require
specialized APIs, libraries, recompilation, relinking, or dataset
pre-partitioning. We compare and contrast the different design
choices inMemX and present preliminary performance evalua-
tion using several resource-intensive benchmarks in both virtual-
ized and non-virtualized Linux. Our evaluations show that large
dataset applications and multiple concurrent VMs achieve signif-
icant speedups usingMemX compared against virtualized local
and iSCSI disks. As an added benefit, we also show that live Xen
VMs usingMemX can migrate seamlessly without disrupting any
running applications.

1. Introduction

In modern cluster-based platforms, Virtual Machines (VMs)
can enable functional and performance isolation across applica-
tions and services. VMs also provide greater resource allocation
flexibility, improve the utilization efficiency, enable seamless load
balancing through VM migration, and lower the operational cost of
the cluster. Consequently, VM environments are increasingly be-
ing considered for executing grid and enterprise applications over
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commodity high-speed clusters.
However, such applications tend to have memory and I/O in-

tensive workloads that can stress the limited resources within a
single VM by demanding more memory than the slice available
to the VM. Clustered bastion hosts (mail, network attached stor-
age), data mining applications, scientific workloads, virtual private
servers, and backend support for websites are common examples
of resource-intensive workloads. I/O bottlenecks can quickly form
due to frequent access to large disk-resident dataset, frequent pag-
ing activity, flash crowds, or competing VMs on the same node.
Even though virtual machines with demanding workloads are here
to stay as integral parts of modern clusters, significant improve-
ments are needed in the ability of memory-constrained VMs to
handle these workloads.

I/O activity due to memory pressure can prove to be particu-
larly expensive in a virtualized environment where all I/O opera-
tions need to traverse an extra layer of indirection. Overprovision-
ing of memory resources (and in general any hardware resource)
within each physical machine is not a viable solution as it can lead
to poor resource utilization efficiency, besides increasing the oper-
ational costs. Although domain-specific out-of-core computation
techniques [13, 15] and migration strategies [19, 2, 6] can also
improve the application performance up to a certain extent,they
do not overcome the fundamental limitation that an application is
restricted to using the memory resources within a single physical
machine.

In this paper, we present the design, implementation, and eval-
uation of theMemXsystem for VMs that bridges the I/O perfor-
mance gap in a virtualized environment by exploiting low-latency
access to the memory of other nodes across a Gigabit cluster.MemX
significantly reduces the execution times for memory and I/Oin-
tensive large dataset applications, provides support for multiple
concurrently executing VMs to utilize cluster-wide memory, and
even supports seamless migration of live VMs with large memory
workloads. MemX is fully transparent to the user applications –
developers do not need any specialized APIs, libraries, recompila-
tion, or relinking for their applications, nor does the application’s
dataset need any special pre-processing, such as data partitioning
across nodes.

We compare and contrast the three modes in whichMemXcan
operate with Xen VMs [4], namely, (1) within non-virtualized
Linux (MemX-Linux), (2) within individual guest OSes (MemX-
DomU), and (3) within a common driver domain (MemX-DD) shared
by multiple guest OSes. We demonstrate, via a detailed evaluation
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Figure 1. Split Driver Architecture in Xen.

using several I/O intensive and large memory benchmarks, that
these applications achieve significant speedups using theMemX
system when compared against virtualized disk-based I/O. The
proposed techniques can also work with other VM technologies
besides Xen. We focus on Xen mainly due to its open source avail-
ability and para-virtualization support.

2. Split Driver Background

Xen is a virtualization technology that provides close to native
machine performance through the use ofpara-virtualization– a
technique by which the guest OS is co-opted into reducing thevir-
tualization overhead via modifications to its hardware dependent
components. In this section, we review the background of theXen
I/O subsystem as it relates to the design ofMemX. Xen exports I/O
devices to each guest OS as virtualized views of “class” devices,
as opposed to real physical devices. For example, Xen exports
a block device or a network device, rather than a specific hard-
ware make and model. The actual drivers that interact with the
native hardware devices can either execute within Dom0 – a priv-
ileged domain that can directly access all hardware in the system
– or within Isolated Driver Domains (IDD), which are essentially
driver specific virtual machines. IDDs require the ability to hide
PCI devices from Dom0 and expose them to other domains. In the
rest of the paper, we will use the termdriver domainto refer to
either Dom0 or the IDD that hosts the native device drivers.

Physical devices can be multiplexed among multiple concur-
rently executing guest OSes. To enable this multiplexing, the priv-
ileged driver domain and the unprivileged guest domains (DomU)
communicate by means of a split device-driver architectureshown
in Figure 1. The driver domain hosts thebackendof the split driver
for the device class and the DomU hosts thefrontend. The back-
ends and frontends interact using high-level device abstractions in-
stead of low-level hardware specific mechanisms. For example, a
DomU only cares that it is using a block device, but doesn’t worry
about the specific type of block device.

Frontends and backends communicate with each other via the
grant table – an in-memory communication mechanism that en-
ables efficient bulk data transfers across domain boundaries. The
grant table enables one domain to allow another domain to access
its pages in system memory. The access mechanism can include
read, write, or mutual exchange of pages. The primary use of the
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Figure 2. MemX-Linux: Baseline operation of
MemXin a non-virtualized Linux environment.

grant table in device I/O is to provide a fast and secure mecha-
nism for unprivileged domains (DomUs) to receive indirect access
to hardware devices. They enable the driver domain to set up a
DMA based data transfer directly to/from the system memory of a
DomU rather than performing the DMA to/from driver domain’s
memory with the additional copying of the data between DomU
and driver domain.

The grant table can be used to either share or transfer pages
between the DomU and driver domain depending upon whether
the I/O operation is synchronous or asynchronous in nature.For
example, block devices perform synchronous data transfer,that
is, the driver domain knows at the time of I/O initiation as to
which DomU requested the block I/O. In this case the frontendof
the block driver in DomU will notify the Xen hypervisor (via the
gnttab_grant_foreign_accesshypercall) that a memory
page can be shared with the driver domain. The DomU then passes
a grant table reference ID via the event channel to the driverdo-
main, which sets up a direct DMA to/from the memory page of the
DomU. Once the DMA is complete, the DomU removes the grant
reference (via thegnttab_end_foreign_access call).

On the other hand, network devices receive data asynchronously,
that is, the driver domain does not know the target DomU for an
incoming packet until the entire packet has been received and its
header examined. In this situation, the driver domain DMAs the
packet into its own page and notifies the Xen hypervisor (via the
gnttab_grant_foreign_transfer call) that the page can
be transferred to the target DomU. The driver domain then trans-
fers the received page to target DomU and receives a free pagein
return from the DomU.

3. Design and Implementation

Here we discuss different design alternatives forMemX, justify
our decisions, and present implementation details.

3.1 MemX-Linux

Figure 2 shows the operation ofMemX-Linux, i.e., MemXin
a non-virtualized (vanilla) Linux environment.MemX-Linux pro-



vides several new features compared to its predecessor [12]. Be-
low we summarize the architecture ofMemX-Linux for complete-
ness and use it as a baseline for comparison with other virtual-
ized versions ofMemX, which are the primary focus of this paper.
Two main components ofMemX-Linux are theclient moduleon
the low memory machines and theserver moduleon the machines
with unused memory. The two communicate using aremote mem-
ory access protocol(RMAP). Both client and server components
execute as isolated Linux kernel modules.

Client Module:.
The client module provides a virtualizedblock deviceinterface

to the large dataset applications executing on the client machine.
This block device can either be configured as a low-latency pri-
mary swap device, or treated as a low-latency volatile storefor
large datasets accessed via the standard file-system interface, or
memory mapped to the the address space of an executing large
memory application. To the rest of the client system, the block
device appears to be a simple I/O partition with a linear I/O space
that is no different from a regular disk partition, except that the ac-
cess latency happens to be over an order of magnitude smallerthan
disk. Internally, however, the client module maps the single linear
I/O space of the block device to the unused memory of multiplere-
mote servers, using a memory-efficient radix-tree based mapping.
The client module also bypasses a standard request-queue mecha-
nism used in Linux block device interface, which is normallyused
to group together spatially consecutive block I/Os on disk.This
is because, unlike physical disks, the access latency to anyoffset
within this block device is almost constant over a gigabit LAN,
irrespective of the spatial locality. The client module also contains
a small bounded-sized write buffer to quickly service writeI/O
requests.

Server Module:.
A server module stores pages in memory for any client node

across the LAN. The server modules do not have any externally
visible interface on the server machines, except for basic initializa-
tion and control. They communicate with clients over the network
using a custom-designedremote memory access protocol(RMAP)
that is described later. Servers broadcast periodic resource an-
nouncement messages which the client modules can use to dis-
cover the available memory servers. Servers also include feedback
about their memory availability and load during both resource an-
nouncement as well as regular page transfers with clients. When a
server reaches capacity, it declines to serve any new write requests
from clients, which then try to select another server, if available,
or otherwise write the page to disk. The server module is also
designed to allow a server node to be taken down while live; our
RMAP implementation candisperse, re-map, and load-balancean
individual server’s pages to any other servers in the cluster that are
capable of absorbing those pages, allowing the server to shut down
without killing any of its client’s applications.

Remote Memory Access Protocol (RMAP).
RMAP is a tailor-designed light-weight window-based reliable

datagram protocol for remote memory access within the same sub-
net. It incorporates the following features: (1) Reliable Packet
Delivery, (2) Flow-Control, and (3) Fragmentation and Reassem-
bly. While one could technically communicate over TCP, UDP,or
even the IP protocol layers, this choice comes burdened withun-
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Figure 3. MemX-DomU: Inserting MemX client
module within DomU’s Linux kernel. Server
executes in non-virtualized Linux.

wanted protocol processing. For instance,MemXdoes not require
TCP’s features such as byte-stream abstraction, in-order delivery,
or congestion control. Nor does it require IP routing functionality,
being a single-subnet system. Thus RMAP bypasses the TCP/IP
protocol stack and communicates directly with the network device
driver. Every RMAP message is acknowledged except for soft-
state and dynamic discovery messages. All client nodes keepa
fixed-size window to control the transmission rate, which works
well for purely in-cluster communication. Another consideration
is that while the standard memory page size is 4KB (or sometimes
8KB), the maximum transmission unit (MTU) in traditional Eth-
ernet networks is limited to 1500 bytes. Thus RMAP implements
dynamic fragmentation/reassembly for page transfer traffic. Addi-
tionally, RMAP also has the flexibility to useJumbo frames, which
are packets with sizes greater than 1500 bytes (typically between
8KB and 16KB), that enable transmission of complete 4KB pages
using a single packet.

MemXalso includes several additional features that are not the
specific focus of this paper. These include a soft-state refresh
mechanism for tracking liveness of clients and servers, server load
balancing, reliability, named remote memory data spaces, that can
be shared by multiple clients, and support for multiple block de-
vice minor numbers by a single client module (important in pro-
viding remote memory access to multiple DomUs in virtualized
environment).

3.2 MemX-DomU (Option 1): MemX Client
Module in DomU

In order to support memory intensive large dataset applica-
tions within a VM environment, the simplest design option isto
place theMemX client module within the kernel of each guest
OS (DomU), whereas remote server modules continue to execute
within non-virtualized Linux kernel. This option is illustrated in
Figure 3. The client module exposes the block device interface for
large memory applications within the DomU as in the baseline, but
communicates with the remote server using the virtualized net-
work interface (VNIC) exported by the network driver domain.
The VNIC in Xen is organized as a split device driver in which the
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frontend (residing in the guest OS) and the backend (residing in
the network driver domain) talk to each other using well-defined
grant table and event channel mechanisms. Two event channels
are used between the backend and frontend of the VNIC – one for
packet transmissions and one for packet receptions. To perform
zero-copy data transfers across the domain boundaries, theVNIC
performs a page exchange with the backend for every packet re-
ceived or transmitted using the grant table. All backend interfaces
in the network driver domain can communicate with the physical
NIC as well as with each other via a virtual network bridge. Each
VNIC is assigned its own MAC address whereas the driver do-
main’s VNIC (in Dom0) uses the physical NIC’s MAC address.
The physical NIC itself is placed in promiscuous mode by Xen’s
driver domain to enable the reception of any packet addressed to
any of the local virtual machines. The virtual bridge demultiplexes
incoming packets to the target VNIC’s backend driver.

Compared to the baseline non-virtualizedMemXdeployment,
MemX-DomU has the additional overhead of requiring every net-
work packet to traverse across domain boundaries in addition to
being multiplexed or demultiplexed at the virtual network bridge.
Additionally, the client module needs to be separately inserted
within each DomU that might potentially execute large memory
applications. Also note that each I/O request is typically 4KBytes
(or sometimes 8KBytes) in size, whereas network hardware uses
a 1500-byte MTU (maximum transmission unit), unless the un-
derlying network supports Jumbo frames. Thus the client module
needs to fragment each 4KByte write request into (and reassemble
a complete read reply from) at least 3 network packets. InMemX-
DomU each fragment needs to traverse the domain boundary to
reach the the backend. Due to current memory allocation poli-
cies in Xen, buffering for each fragment ends up consuming an
entire 4KByte page worth of memory allocation, i.e., three times
the typical page size. We will contrast this performance overhead
in greater detail withMemX-DD option below.

3.3 MemX-DD (Option 2): MemXClient Mod-
ule in Driver Domain

A second design option is to place theMemXclient module

within a block driver domain (Dom0) and allow multiple DomUs
to share this common client module via their virtualized block de-
vice (VBD) interfaces. This option is shown in Figure 4. The
guest OS executing within the DomU does not require anyMemX
specific modifications. TheMemXclient module executing within
the driver domain exposes a block device interface, as before. Any
DomU, whose applications require remote memory resources,con-
figures a split VBD. The frontend of the VBD resides in DomU
and the backend in the block driver domain. The frontend and
backend of each VBD communicates using event channels and the
grant table, as in the earlier case of VNICs. TheMemXclient mod-
ule provides a separate VBD lettered-slice (/dev/memx{a,b,c}, etc.)
for each backend that corresponds to a distinct DomU. On the net-
work side, theMemXclient module attaches itself to the driver
domain’s VNIC which in turn talks to the physical NIC via the
virtual network bridge. For performance reasons, here we assume
that the network driver domain and disk driver domain are co-
located within a single privileged domain (such as Dom0). Thus
the driver domain’s VNIC does not need to be organized as another
split driver. Rather it is a single software construct that can attach
directly to the virtual network bridge. During execution within
a DomU, read/write requests to remote memory are generated in
the form of synchronous I/O requests to the corresponding VBD’s
frontend. These requests are sent to theMemXclient module via
the event channel and the grant table. The client module packages
each I/O request into network packets and transmits them asyn-
chronously to remote memory servers using RMAP.

Note that, although the network packets still need to traverse
the virtual network bridge, they no longer need to traverse asplit
VNIC architecture, unlike inMemX-DomU. One consequence of
not going through a split VNIC architecture is that, while client
module still needs to fragment a 4KByte I/O request into 3 net-
work packets to fit the MTU requirements, each fragment no longer
needs to occupy an entire 4KByte buffer, unlike inMemX-DomU.
As a result, only one 4KByte I/O request needs to cross the domain
boundary across the split VBD driver, as opposed to three 4KB
packet buffers inMemX-DomU. Secondly, theMemXclient mod-
ule can be inserted once in the driver domain and still be shared
among multiple DomUs. Finally, since the guest OS within Do-
mUs do not require anyMemXspecific software components; the
DomUs can potentially run any para-virtualized OS and not just
XenoLinux.

However, compared to the non-virtualized baseline case,MemX-
DD still has the additional overhead of using the split VBD and
the virtual network bridge. Also note that, unlikeMemX-DomU,
MemX-DD does not currently support seamless migration of live
Xen VMs using remote memory. This is because part of the guest’s
internal state (page-to-server mappings) that resides in the driver
domain ofMemX-DD is not automatically transferred by the mi-
gration mechanism in Xen. We plan to enhance Xen’s migra-
tion mechanism to transfer this internal state in a host-independent
manner to the target machine’sMemX-DD module.

3.4 (Option 3): MemX Server in DomU

Technically speaking, we can also execute theMemXserver
module within a guest OS, coupled with Options 1 or 2 above.
This could enable one to initiate a VM solely for the purpose of
providing remote memory to other low-memory client VMs that
are either across the cluster or even within the same physical ma-
chine. However, practically, this option does not seem to provide



any significant functional benefits whereas the overheads ofexe-
cuting the server module within a DomU are considerable. The
bottom-line is that equivalent remote memory functionality can be
provided more efficiently by aMemXserver module running in a
non-virtualized environment. Consequently, we do not pursue this
option further.

3.5 (Option 4): Expanding the Pseudo-
physical Address Space of Guest OS

Another alternative to supporting large memory applications
with remote memory is to enable the guest OS to view a larger
pseudo-physicalmemory address space than the available physi-
cal memory within the local machine. This option would require
fundamental modifications to the memory management in both the
Xen hypervisor as well as the guest OS. In particular, at boottime,
the guest OS would believe that it has a large “physical” mem-
ory – or the so called pseudo-physical memory space. It then
becomes the Xen hypervisor’s task to map each DomU’s large
pseudo-physical address space partly into local physical memory,
partly into remote memory, and the rest to secondary storage. This
is analogous to the large conventional virtual address space avail-
able to each process that is managed transparently by traditional
operating systems. The functionality provided by this option is es-
sentially equivalent to that provided byMemX-DomU andMemX-
DD. However, this option requires the Xen hypervisor to takeup a
prominent role in memory address translation process, something
that original design of Xen strives to minimize. This optionalso
runs the risk of paying a significant penalty fordouble (page) faults
– the situation where the paging daemon in DomU mistakenly at-
tempts to swap out a page that already resides on a swap device
managed by the hypervisor (or vice-versa), resulting in thetarget
page being brought into physical memory and getting swappedout
of the system again immediately. The above problems can be al-
leviated to some extent if hardware support for nested page-tables
were available. Due to the above limitations and lack of functional
benefits, we do not pursue this option further.

4. Performance Evaluation

In this section we evaluate the performance of the different
variants ofMemX. Our testbed consists of eight machines, each
having 4 GB of memory, 64-bit dual-core 2.8 Ghz processor, and
Gigabit Broadcom Ethernet NIC. Our Xen version is 3.0.4 and
XenoLinux version 2.6.18. BackendMemXservers run on vanilla
Linux 2.6.20. Collectively, this provides us with over 24GBof ef-
fectively usable cluster-wide memory after accounting forroughly
1GB of local memory usage per node. The local memory of client
machines is either 512MB or 1GB in all tests. The client module
is implemented in about 2600 lines of C code and server module
in about 1600 lines, with no changes to either the core Linux ker-
nel or the Xen hypervisor. Our current implementation worksonly
with para-virtualized Xen guests. In addition to the threeMemX
configurations described earlier, namelyMemX-Linux, MemX-DomU,
andMemX-DD, we also include a fourth configuration –MemX-
Dom0 – for the sole purpose of baseline performance evaluation.
This additional configuration corresponds to theMemXclient mod-
ule executing within Dom0 itself, but not as part of the back-
end for a VBD. Rather, the client module inMemX-Dom0 serves
large memory applications executing within Dom0. Furthermore,

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000  1e+06

P
er

ce
nt

 o
f R

eq
ue

st
s

Latency (microseconds, logscale)

CDF of MemX-DD vs Disk Latencies (Reads, Buffered)

MemX-DD-Rand
MemX-DD-Sequ

Disk-Rand
Disk-Seq

Figure 5. Sequential/random read latency dis-
tributions.

“disk” baseline refers to virtualized disk within Dom0, which is
exported as a VBD to guest-VMs.

4.1 Microbenchmarks

Table 1 compares differentMemX-combinations and virtual disk
in terms of latency and bandwidth. RTT is the average round trip
time for a single 4KB read request from aMemXclient to a server,
measured in kernel using the on-chip time stamp counter (TSC).
This is the latency that the I/O requests from the VFS (virtual
filesystem) or the system pager would experience.MemX-Linux,
as a base case, provides an RTT of 85µs. Following close behind
are MemX-Dom0, MemX-DD, and MemX-DomU in that order.
The virtualized disk base case performs as expected at an average
8.3ms. These RTT numbers show that accessing the memory of re-
mote machine over the network is about two orders of magnitude
faster than from local virtualized disk. Also, the Xen VMM in-
troduces negligible overhead of 10µs inMemX-Dom0 andMemX-
DD over MemX-Linux. Similarly the split network driver archi-
tecture, which needs to transfer 3 packet fragments for each4KB
block across the domain boundaries, introduces an overheadof
another 20µs inMemX-DomU overMemX-Dom0 andMemX-DD.
Bandwidth measurements are performed using a custom bench-
mark which issues a stream of sequential asynchronous 4KB I/O
requests, with the the range of I/O offsets being at least twice the
size of client memory. We observe that the bandwidth reduction
for MemX-DD and andMemX-DomU is small over the baseline
– about 35Mbps forMemX-DD and 98Mbps forMemX-DomU.
Virtual disk bandwidth trails far behind all the variants ofMemX.

Figure 5 compares the read latency distribution for a user level
application that performs either sequential or random I/O on ei-
therMemXor the virtual disk. Random read latencies are an order
of magnitude smaller withMemX-DD (around 160µs) than with



MemX- MemX- MemX- MemX- Virtual
Linux Dom0 DD DomU Disk

RTT (µs) 85 95 95 115 8300

Write b/w (Mbps) 950 950 915 852 295

Read b/w (Mbps) 916 915 915 840 295

Table 1. Latency and bandwidth comparison.
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Figure 6. Quicksort execution times vs. prob-
lem size.

disk (around 9ms). Sequential read latency distributions are simi-
lar for MemX-DD and disk primarily due to filesystem prefetching.
RTT distribution for buffered write requests (not shown) are sim-
ilar for both MemX-DD and disk, mostly less than 10µs due to
write buffering. Note that these RTT-values are measured from
user-level, which adds a few tens of microseconds to the kernel-
level RTTs in Table 1.

4.2 Application Speedups

We now evaluate the execution times of a few large memory
applications using our testbed. Again, we includeboth MemX-
Linux and virtual disk as base cases to illustrate the overhead
imposed by Xen virtualization and the gain over the virtualized
disk respectively. Figure 6 shows the performance of a very large
sort of increasingly large arrays of integers, using a C implemen-
tation of Quicksort. We also include a base case plot for pure
in-memory sorting using a vanilla-Linux 4 GB node. From the
figure, we ceased to even bother with the disk case beyond 2GB
problem sizes due to the unreasonably large amount of time it
takes to complete, potentially for days. The sorts usingMemX-
DD, MemX-domU, andMemX-Linux however finished within 100
minutes, where the distinction between the different modesis very
small. Also note that performance is still about 3 times faster when
using local memory, than with MemX, and consequently there is
room for a cluster load balancer to do a better job at placing VMs
with large memory footprints on nodes that have more local mem-
ory. Table 2 lists the execution times for much larger problem
sizes including (1) ray-tracing based graphics rendering applica-
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tion called POV-ray [22], (2) Integer Sort (IS-NPB) benchmark in
the NAS Parallel Benchmark (NPB) suite [21], (3) Datacube (DC-
NPB) benchmark in the NPB suite, (4) Sql-bench [20] benchmark
on amysql database that is stored in either remote memory or
virtual disk, (5) NS2 [17] – the popular network simulation tool
that is used to simulate a delay partitioning algorithm on a 6-hop
wide-area network path, and (6) Quicksort again on a 5GB dataset.
Again, both theMemXcases outperform the virtual disk case for
each of the benchmarks. Note that the performance overhead of
MemX-DD versusMemX-Linux is substantially higher at appli-
cation level (up to 80%) when compared against the kernel-level
microbenchmarks in Table 1 (about 11%), primarily because the
former include additional overheads due to Xen I/O subsystem,
paging subsystem, and user-kernel crossings. .

4.3 Multiple Client VMs

In this section, we evaluate the overhead of executing multiple
client VMs usingMemX-DD. In most data centers or grid clusters,
a high-speed backend interconnect, such as iSCSI or FibreChan-
nel, would provide backend storage for guest VMs. To emulate
this base case in our cluster, we use five dual-core 4GB memory
machines to evaluateMemX-DD in a 4-disk parallel iSCSI setup.
We used the open source iSCSI target software from IET [23] and
the initiator software from open-iscsi.org within Dom0 as adriver
domain for all the Xen Guests. One of the five machines exe-
cuted up to twenty concurrent 100MB Xen Guests, each hostinga
400MB Quicksort application. We vary the number of concurrent



Appli- Mem Client MemX- MemX- Virtual
cation Size Mem Linux DD Disk

Quicksort 5GB 512 MB 65 min 93 min > 10 hrs
Povray (6GB) 512 MB 48 min 61 min > 10 hrs
Povray (13GB) 1 GB 93 min 145 min > 10 hrs
IS-NPB (6GB) 512 MB 83 min 126 min > 10 hrs
DC-NPB (10GB) 1 GB 152 min 217 min > 10 hrs
sql-bench (4GB) 512 GB 114 min 208 min > 10 hrs

NS2 (5GB) 1 GB 175 min 228 min > 10 hrs

Table 2. Execution time comparisons for various large memor y application workloads.

guest VMs from 1 to 20, and in each guest we run Quicksort to
completion. We perform the same experiment for bothMemX-DD
and iSCSI. Figure 7 shows that at about 10 GB of collective mem-
ory and 20 concurrent virtual machines the execution time with
MemX-DD is about 5 times smaller than with iSCSI setup. Recall
that we are using four remote iSCSI disks, and one can observe
a stair-step behavior in the iSCSI curve where the level of paral-
lelism reaches 4, 8, 12, and 16 VMs. Even with concurrent disks
and competing virtual machine CPU activity,MemX-DD provides
clear performance edge.

4.4 Live VM Migration

MemX-DomU configuration has a significant benefit when it
comes to migrating live Xen VMs [6] to better utilize resources,
even thoughMemX-DD has higher bandwidth and lower I/O la-
tency thanMemX-DomU. Specifically, a VM usingMemX-DomU
can be seamlessly migrated from one physical machine to another,
without disrupting the execution of any memory intensive large
dataset applications within the VM. First, sinceMemX-DomU is
designed as a self-contained pluggable module within the guest
OS, any page-to-server mapping information is migrated along
with the kernel state of the guest OS without leaving any residual
dependencies behind in the original machine. Second reasonis
that RMAP used for communicating read-write requests to remote
memory is designed to be reliable. As the VM carries with itself
its link layer MAC address identification during the migration pro-
cess, any in-flight packets dropped during migration are safely re-
transmitted to the VM’s new location. As a preliminary evaluation,
we conducted an experiment to compare the live VM migration
performance using iSCSI versusMemX-DomU. For the iSCSI ex-
periment, we configured a single iSCSI disk as swap space. Sim-
ilarly, for theMemX-DomU case, we configured the block device
exported by client module as the swap device. In both configu-
rations, we ran 1GB Quicksort within a 512 MB guest. The live
migration took an average of 26 seconds to complete in the iSCSI
setup whereas it took 23 seconds withMemX-DomU. While fur-
ther evaluation is necessary, this preliminary experimentpoints to
potential benefits of usingMemX-DomU.

5. Related Work

To the best of our knowledge,MemXis the first system in a VM
environment that provides unmodified large memory applications
with a completely transparent and virtualized access to cluster-
wide remote memory over commodity gigabit Ethernet LANs. Sev-

eral prior efforts have focused upon remote memory access innon-
virtualized environments[7, 10, 16, 18, 11, 12, 24, 8]. Distributed
shared memory (DSM) systems [9, 1] allow a set of independent
nodes to behave as a large shared memory multi-processor, often
requiring customized programming to share common data across
nodes. We are unaware of any DSM systems to date that work ef-
ficiently and transparently within a virtualized environment. Ker-
righed [14] and vNuma [5] implement a single system image on
top of multiple workstations using DSM techniques. However,
they do not target support for multiple concurrent VMs, suchas
Xen guests.

Techniques also exist to migrate applications [19] or entire VMs
[2, 6] to nodes that have more free resources (memory, CPU) or
better data access locality. Both Xen [6] and VMWare [2] sup-
port migration of VMs from one physical machine to another, for
example, to move a memory-hungry enterprise application from a
low-memory node to a memory-rich node. However large memory
applications within each VM are still constrained to execute within
the memory limits of a single physical machine at any time.In
fact, we have shown in this paper thatMemX can be used in con-
junction with the VM migration in Xen, combining the benefitsof
both live VM migration and remote memory access.MOSIX [3]
is a management system that uses process migration to allow shar-
ing of computational resources among a collection of nodes,as if
in a single multiprocessor machine. However each process isstill
restricted to use memory resources within a single machine.

Another approach is to develop domain specific out-of-core
computation techniques such as [13, 15]. Out-of-core solutions
tend to be highly application specific, requiring new algorithms for
each new application domain. These techniques, while challeng-
ing in themselves, divert the efforts of the application developers
from the core functionality of the application itself. Although both
out-of-core techniques and migration can alleviate the I/Obottle-
neck to a limited extent, they do not overcome the fundamental
limitation that an application is restricted to the memory available
within a single machine.MemXprovides an alternative, and per-
haps even a complement, to both approaches by enabling transpar-
ent use of cluster-wide memory resources.

6. Conclusions

State-of-the-art in virtual machine technology does not ade-
quately address the needs of memory and I/O intensive workloads
that are increasingly common in modern grid computing and en-
terprise applications. In this paper, we presented the design, im-
plementation, and evaluation of theMemXsystem in the Xen envi-



ronment that enables memory and I/O intensive VMs to transpar-
ently utilize the collective pool of memory across a cluster. Large
dataset applications usingMemXdo not require any specialized
APIs, libraries, or any other modifications.MemXcan operate as a
kernel module within non-virtualized Linux (MemX-Linux), an in-
dividual VM (MemX-DomU), or a shared driver domain (MemX-
DD). Preliminary evaluations of ourMemXprototype using sev-
eral different benchmarks shows that I/O latencies are reduced by
an order of magnitude and that large memory applications speed
up significantly when compared to virtualized disk. Additionally,
live Xen VMs executing large memory applications overMemX-
DomU can be migrated without disrupting applications. Our on-
going work includes the capability to provide per-VM reservations
over the cluster-wide memory, and enabling seamless migration of
VMs in the driver domain mode of operation.
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