
Multi-Hypervisor	Virtual	Machines:	
Enabling	An	Ecosystem	of	Hypervisor-level	Services

Kartik	Gopalan,	Rohith Kugve,	Hardik Bagdi,	Yaohui Hu	– Binghamton	University
Dan	Williams,	Nilton Bila – IBM	T.J.	Watson	Research	Center

Funded	by	NSF

Dan Williams†, Yaohui Hu‡, Umesh Deshpande�, Piush K Sinha‡, Nilton Bila†, Kartik Gopalan‡, Hani Jamjoom†

†IBM T.J. Watson Research Center
‡Binghamton University
�IBM Almaden Research Center

Funded in part by the NSF

Enabling Efficient
Hypervisor-as-a-Service Clouds
with Ephemeral Virtualization

Hypervisors	

• A	thin	and	secure	layer	in	the	cloud
-- or	--

Guest	1

Hypervisor

Hypervisors

• A	thin	and	secure	layer	in	the	cloud
-- or	--

• Feature-filled	cloud	differentiators
• Migration
• Checkpointing
• High	availability
• Live	Guest	Patching
• Network	monitoring
• Intrusion	detection
• Other	VMI

Guest	1

Hypervisor

Service	
A

Service	
B

Service	
C

Lots	of	third-party	interest	in	hypervisor-level	
services

• Ravello
• Bromium
• XenBlanket
• McCafe DeepDefender
• Secvisor
• Cloudvisor
• And	more…

• But	limited	support	for	third	party	
services	from	base	hypervisor.

How	can	a	guest	use	multiple third-party	
hypervisor-level	services?

• Our	Solution:	Span	virtualization

• One	guest	controlled	by	multiple	
coresident hypervisors.

Hypervisor

Guest	1

L0

L1s
Service	

A

Guest	2

Service	
B

Service	
C

Service	
D

Outline

• Why	multi-hypervisor	virtual	machines?
• Design	of	Span	Virtualization
• Evaluations
• Related	Work
• Conclusions	and	Future	Work

Hypervisor

Option	1:	Fat	hypervisor

• All	services	run	at	the	most	
privileged	level.

• But…hypervisor	cannot	trust	third-
party	services	in	privileged	mode.

Guest	1 Guest	2

Service	
A

Service	
B

Service	
C

Option	2:	Native	user	space	services

• Services	run	natively	in	the	user	space	of	
the	hypervisor

• Services	control	guest	indirectly	via	the	
hypervisor

• E.g.	QEMU	with	KVM,	uDenali

• But…Potentially	large	user-kernel	
interface
• event	interposition	and	system	calls

Guest	1

Hypervisor

Service	
A

Service	
B

Service	
C

Hypervisor	User	space

Cloud	providers	reluctant	to	run	third-
party	services	natively,	even	if	in	user	
space.

Option	3:	Service	VMs

• Run	services	inside	deprivileged
VMs

• Services	control	guest	indirectly	via	
hypercalls and	events

• Single	trusted	Service	VM
• Runs	all	services
• E.g.	Domain0	in	Xen

-- or	--

Guest	1

Hypervisor

Service	
A

Service	
B

Service	
C

Service	VM

Option	3:	Service	VMs

• Run	services	inside	deprivileged
VMs

• Services	control	guest	indirectly	via	
hypercalls and	events

• Multiple	service	VMs
• One	per	service
• Deprivileged and	restartable
• E.g.	Service	Domains	in	Xoar

Guest	1

Hypervisor

Service	
A

Service	
B

Service	
C

Service	VMs

Option	3:	Service	VMs

• Run	services	inside	deprivileged
VMs

• Services	control	guest	indirectly	via	
hypercalls and	events

• Multiple	service	VMs
• One	per	service
• Deprivileged and	restartable
• E.g.	Service	Domains	in	Xoar

Guest	1

Hypervisor

Service	
A

Service	
B

Service	
C

Service	VMs

Lack	direct	control	over	ISA-level	guest	state
• Memory	mappings,	VCPU	scheduling,	port-mapped	I/O,	etc.

Hypervisor

Option	4:	Nested	Virtualization

• Services	run	in	a	deprivileged L1	
hypervisor,	which	runs	on	L0.

• Services	control	guest	at	virtualized	ISA	
level.

• But	… multiple	services	must	reside	in	the	
same	L1,	i.e.	fat	L1.

• Vertically Stack	L1	hypervisors?
• More	than	two	levels	of	nesting	is		inefficient.

A B C D

L0

L1

Guest	1 Guest	2

Hypervisor

Our	solution:	Span	Virtualization

• Allow	multiple	coresident L1s	to	
concurrently	control	a	common	guest
• i.e.	Horizontal	layering of	L1	hypervisors

• Guest	is	a	multi-hypervisor	virtual	machine

• Each	L1	
• Offers	guest	services	that	augment	L0’s	services.
• Controls	one	or	more	guest	resources

Guest	1

L0

L1s A B C D

Guest	2

Design	Goals	of	Span	Virtualization

• Guest	Transparency
• Guest	remains	unmodified

• Service	Isolation
• L1s	controlling	the	same	
guest	are	unaware	of	each	
other.

Hypervisor

Guest	1

L0

L1s A B C D

Guest	2

Guest	Control	operations

• Operations:
• Attach an	L1	to	a	specified	guest	resource

• Detach an	L1	from	a	guest	resource

• Subscribe an	attached	L1	to	receive	guest	events	(currently	memory	events)

• Unsubscribe an	L1	from	a	subscribed	guest	event

• L0	supervises	which	L1	controls	which	
Guest	resource
• Memory,	VCPU	and	I/O

• L0	and	L1s	communicate	via	Traps/Faults	
(implicit)	and	Messages	(explicit)

L0	Hypervisor

Virtual	Guest	EPTVirtual	Guest	EPT

L1	Hypervisor(s)

Span	Guest
(unmodified)

Message	Channel L1	Traps Guest	
Faults

Control	over	Guest	Resources

• Guest	Memory
• Shared:	All	hypervisors	have	the	same	consistent	view	of	guest	memory

• Guest	VCPUs
• Exclusive:	All	guest	VCPUs	are	controlled	by	one	hypervisor	at	any	instant

• Guest	I/O	devices
• Exclusive:	Different	virtual	I/O	devices	of	a	guest	may	be	controlled	by	different	hypervisors

• Control	Transfer
• Control	over	guest	VCPUs	and	I/O	devices	can	be	transferred	from	one	L1	to	another	via	L0.

Memory	Translation
Isolation and Communication: Another design goal

is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Single-Level	Virtualization

Memory	Translation
Isolation and Communication: Another design goal

is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Single-Level	Virtualization

Nested	Virtualization

Isolation and Communication: Another design goal
is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Memory	Translation
Isolation and Communication: Another design goal

is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Single-Level	Virtualization

Nested	Virtualization

Isolation and Communication: Another design goal
is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

Span	Virtualization

Isolation and Communication: Another design goal
is to compartmentalize L1 services, from each other and
from L0. First, L1s must have lower execution privi-
lege compared to L0. Secondly, L1s must remain iso-
lated from each other. These two goals are achieved by
deprivileging L1s using nested virtualization and execut-
ing them as separate guests on L0. Finally, L1s must re-
main unaware of each other during execution. This goal
is achieved by requiring L1s to receive any subscribed
guest events that are generated on other L1s only via L0.

There are two ways that L0 communicates with L1s:
implicitly via traps and explicitly via messages. Traps
allow L0 to transparently intercept certain memory man-
agement operations by L1 on the guest. Explicit mes-
sages allow an L1 to directly request guest control from
L0. An Event Processing module in L0 traps runtime up-
dates to guest memory mappings by any L1 and synchro-
nizes guest mappings across different L1s. The event
processing module also relays guest memory faults that
need to be handled by L1. A bidirectional Message
Channel relays explicit messages between L0 and L1s in-
cluding attach/detach requests, memory event subscrip-
tion/notification, guest I/O requests, and virtual inter-
rupts. Some explicit messages, such as guest I/O re-
quests and virtual interrupts, could be replaced with im-
plicit traps. Our choice of which to use is largely based
on ease of implementation on a case-by-case basis.

Continuous vs. Transient Control: Span virtualiza-
tion allows L1’s control over guest resources to be either
continuous or transient. Continuous control means that
an L1 exerts uninterrupted control over one or more guest
resources for an extended period of time. For example,
an intrusion detection service in L1 that must monitor
guest system calls, VM exits, or network traffic, would
require continuous control of guest memory, VCPUs,
and network device. Transient control means that an L1
acquires full control over guest resources for a brief du-
ration, provides a short service to the guest, and releases
guest control back to L0. For instance, an L1 that period-
ically checkpoints the guest would need transient control
of guest memory, VCPUs, and I/O devices.

4 Memory Management

A Span VM has a single guest physical address space
which is mapped into the address space of all attached
L1s. Thus any memory write on a guest page is imme-
diately visible to all hypervisors controlling the guest.
Note that all L1s have the same visibility into the guest
memory due to the horizontal layering of Span virtualiza-
tion, unlike the vertical stacking of nested virtualization,
which somewhat obscures the guest to lower layers.

EPTGuest

Page	Table EPTVA GPA HPA

Page	
TableVA GPA L1PA

Shadow	
EPT
Shadow	
EPT

Shadow	
EPT

Virtual	EPTVirtual	EPTVirtual	
EPT

Virtual	EPTVirtual	EPTEPTL1

Page	
Table

Virtual	
EPTVA GPA L1PA EPTL1 HPA

Shadow	
EPT

(a)	Single-level

(b)	Nested

(c)	Span

HPA

Figure 3: Memory translation for single-level, nested,
and Span VMs. VA = Virtual Address; GPA = Guest
Physical Address; L1PA = L1 Physical Address; HPA =
Host Physical Address.

4.1 Traditional Memory Translation
In modern x86 processors, hypervisors manage the phys-
ical memory that a guest can access using a virtualiza-
tion feature called Extended Page Tables (EPT) [37], also
called Nested Page Tables in AMD-V [5].

Single-level virtualization: Figure 3(a) shows that for
single-level virtualization, the guest page tables map vir-
tual addresses to guest physical addresses (VA to GPA in
the figure). The hypervisor uses an EPT to map guest
physical addresses to host physical addresses (GPA to
HPA). Guest memory permissions are controlled by the
combination of permissions in guest page table and EPT.

Whenever the guest attempts to access a page that is
either not present or protected in the EPT, the hardware
generates an EPT fault and traps into the hypervisor,
which handles the fault by mapping a new page, em-
ulating an instruction, or taking other actions. On the
other hand, the hypervisor grants complete control over
the traditional paging hardware to the guest. A guest OS
is free to maintain the mappings between its virtual and
guest physical address space and update them as it sees
fit, without trapping into the hypervisor.

Nested virtualization: Figure 3(b) shows that for
nested virtualization, the guest is similarly granted con-
trol over the traditional paging hardware to map virtual
addresses to its guest physical address space. L1 main-
tains a Virtual EPT to map the guest pages to pages in
L1’s physical addresses space, or L1 pages. Finally, one
more translation is required: L0 maintains EPTL1 to map
L1 pages to physical pages. However, x86 processors
can translate only two levels of addresses in hardware,
from guest virtual to guest physical to host physical ad-
dress. Hence the Virtual EPT maintained by L1 needs to
be shadowed by L0, meaning that the Virtual EPT and
EPTL1 must be compacted by L0 during runtime into a

238 2017 USENIX Annual Technical Conference USENIX Association

• Guest	physical	memory	to	Host	physical	
memory	translation	should	be	the	same	
regardless	of	the	translation	path.

• L0	syncs	Shadow	EPTs	and	EPTL1s
• Guest	faults	
• Virtual	EPT	modifications	by	L1
• When	L1	directly	accesses	guest	memory

• L1s	subscribe	to	guest	memory	events	via	
L0
• E.g.	to	track	write	events	for	dirty	page	
tracking

Synchronizing	Guest	Memory	Maps

Shadow EPT that directly maps guest pages to physical
pages. To accomplish this, manipulations to the Virtual
EPT by L1 trigger traps to L0. Whenever L1 loads a Vir-
tual EPT, L0 receives a trap and activates the appropriate
Shadow EPT. This style of nested page table manage-
ment is also called multi-dimensional paging [10].

EPT faults on guest memory can be due to (a) the guest
accessing its own pages that have invalid Shadow EPT
entries, and (b) the L1 directly accessing guest pages that
have invalid EPTL1 entries to perform tasks such as I/O
processing and VM introspection (VMI). Both kinds of
EPT faults are first intercepted by L0. L0 examines a
Shadow EPT fault to further determine whether it is due
to a invalid Virtual EPT entry; such faults are forwarded
to L1 for processing. Otherwise, faults due to invalid
EPTL1 entries are handled by L0.

Finally, an L1 may modify the Virtual EPT it main-
tains for a guest in the course of performing its own
memory management. However, since the Virtual EPT
is shadowed by L0, all Virtual EPT modifications cause
traps to L0 for validation and a Shadow EPT update.

4.2 Memory Translation for Span VMs
In Span virtualization, L0 extends nested EPT manage-
ment to guests that are controlled by multiple hypervi-
sors. Figure 3(c) shows that a Span guest has multiple
Virtual EPTs, one per L1 that is attached to the guest.
When an L1 acquires control over a guest’s VCPUs, the
L0 shadows the guest’s Virtual EPT in the L1 to construct
the corresponding Shadow EPT, which is used for mem-
ory translations. In addition, an EPTGuest is maintained
by L0 for direct guest execution on L0. A guest’s mem-
ory mappings in Shadow EPTs, the EPTGuest , and the
EPTL1 are kept synchronized by L0 upon page faults so
that every attached hypervisor sees a consistent view of
guest memory. Thus, a guest virtual address leads to the
same host physical address irrespective of the Shadow
EPT used for the translation.

4.3 Memory Attach and Detach
A Span VM is initially created directly on L0 as a single-
level guest for which the L0 constructs a regular EPT. To
attach to the guest memory, a new L1 requests L0, via a
hypercall, to map guest pages into its address space.

Figure 4 illustrates that L1 reserves a range in the L1
physical address space for guest memory and then in-
forms L0 of this range. Next, L1 constructs a Virtual EPT
for the guest which is shadowed by L0, as in the nested
case. Note that the reservation in L1 physical address
space does not immediately allocate physical memory.
Rather, physical memory is allocated lazily upon guest
memory faults. L0 dynamically populates the reserved
address range in L1 by adjusting the mappings in EPTL1

Span	Guest

Shadow	EPT

Virtual	Guest	
EPT

EPTL1

Virtual	Guest	
EPT

L1	Hypervisor(s)
Virtual	EPT

Virtual	EPT	
Trap	Handler

Guest	Event	
Handling

Memory	Event	
Emulator

L0
Virtual	EPT	
Modifications

Shadow	EPTShadow	EPT

L1PA

HPA

Page	Table

Process	VA

Event	Subscription	
Service

Memory	
EventsGPA

Event
Notifications

Figure 4: Span memory management overview.

and the Shadow EPT. A memory-detach operation cor-
respondingly undoes the EPTL1 mappings for guest and
releases the reserved L1 address range.

4.4 Synchronizing Guest Memory Maps
To enforce a consistent view of guest memory across
all L1s, L0 synchronizes memory mappings upon two
events: EPT faults and Virtual EPT modifications.

Fault handling for Span VMs extends the correspond-
ing mechanism for nested VMs described earlier in Sec-
tion 4.1. The key difference in the Span case is that
L0 first checks if a host physical page has already been
mapped to the faulting guest page. If so, the existing
physical page mapping is used to resolve the fault, else a
new physical page is allocated.

As with the nested case, modifications by an L1 to es-
tablish Virtual EPT mappings trap to a Virtual EPT trap
handler in L0, shown in Figure 4. When the handler re-
ceives a trap due to a protection modification, it updates
each corresponding EPTL1 with the new least-permissive
combination of page protection. Our current prototype
allows protection modifications but disallows changes to
established GPA-to-L1PA mappings to avoid having to
change mappings in multiple EPTs.

4.5 Memory Event Subscription
An L1 attached to a guest may wish to monitor and con-
trol certain memory-related events of the guest to provide
a service. For instance, an L1 that provides live check-
pointing or guest mirroring may need to perform dirty
page tracking in which pages to which the guest writes
are periodically recorded so they can be incrementally
copied. As another example, an L1 performing intrusion
detection using VM introspection might wish to monitor
a guest’s attempts to execute code from certain pages.

In Span virtualization, since multiple L1s can be at-
tached to a guest, the L1 controlling the guest’s VCPUs
may differ from the L1s requiring the memory event no-
tification. Hence L0 provides a Memory Event Subscrip-

USENIX Association 2017 USENIX Annual Technical Conference 239

I/O	Control

Hypervisor

Guest

Backend

Frontend

Ring	BufferI/O	
Request

I/O	
ResponseKick Interrupt

Native	Device	I/O

Traditional	Para-virtual	I/O

• We	consider	para-virtual	I/O	in	this	work

I/O	Control
• We	consider	para-virtual	I/O	in	this	work
• A	Span	Guest’s	I/O	device	and	VCPUs	may	be	controlled	by	different	L1s

tion interface to enable L1s to independently subscribe to
guest memory events. An L1 subscribes with L0, via the
message channel, requesting notifications when a spe-
cific type of event occurs on certain pages of a given
guest. When the L0 intercepts the subscribed events,
it notifies all L1 subscribers via the message channel.
Upon receiving the event notification, a memory event
emulator in each L1, shown in Figure 4, processes the
event and responds back to L0, either allowing or dis-
allowing the guest’s memory access which triggered the
event. The response from the L1 also specifies whether
to maintain or discontinue the L1’s event subscription
on the guest page. For example, upon receiving a write
event notification, an L1 that performs dirty page track-
ing will instruct L0 to allow the guest to write to the page,
and cancel the subscription for future write events on the
page, since the page has been recorded as being dirty.
On the other hand, an intrusion detection service in L1
might disallow write events on guest pages containing
kernel code and maintain future subscription. L0 concur-
rently delivers event notifications to all L1 subscribers.
Guest memory access is allowed to proceed only if all
subscribed L1s allow the event in their responses.

To intercept a subscribed memory event on a page, the
L0 applies the event’s mask to the corresponding EPTL1
entry of each L1 attached to the guest. Updating EPTL1
prompts L0 to update the guest’s Shadow EPT entry with
the mask, to capture guest-triggered memory events. Up-
dating EPTL1 entries also captures the events resulting
from direct accesses to guest memory by an L1 instead
of the guest. For instance, to track write events on a guest
page, the EPT entry could be marked read-only after sav-
ing the original permissions for later restoration.

5 I/O Control

In this work, guests use paravirtual devices [54, 6]
which provide better performance than device emula-
tion [59] and provide greater physical device sharing
among guests than direct device assignment [11, 12, 50].

For single-level virtualization, the guest OS runs a set
of paravirtual frontend drivers, one for each virtual de-
vice, including block and network devices. The hypervi-
sor runs the corresponding backend driver. The frontend
and the backend drivers communicate via a shared ring
buffer to issue I/O requests and receive responses. The
frontend places an I/O request in the ring buffer and no-
tifies the backend through a kick event, which triggers
a VM exit to the hypervisor. The backend removes the
I/O request from the ring buffer, completes the request,
places the I/O response in the ring buffer, and injects an
I/O completion interrupt to the guest. The interrupt han-
dler in the frontend then picks up the I/O response from
the ring buffer for processing. For nested guests, paravir-

L1a

Guest

Backend

Frontend

Ring	
Buffer

I/O	
Request

I/O	
Response Forwarded

Interrupt

L0	

L1b

Forwarded
Kick

Native	I/O	
via	L0

Figure 5: Paravirtual I/O for Span VMs. L1a controls
the guest I/O device and L1b controls the VCPUs. Kicks
from L1b and interrupts from L1a are forwarded via L0.

tual drivers are used at both levels.
For Span guests, different L1s may control guest VC-

PUs and I/O devices. If the same L1 controls both guest
VCPUs and the device backend then I/O processing pro-
ceeds as in the nested case. Figure 5 illustrates the other
case, when different L1s control guest VCPUs and back-
ends. L1a controls the backend and L1b controls the
guest VCPUs. The frontend in the guest and backend
in L1a exchange I/O requests and responses via the ring
buffer. However, I/O kicks are generated by guest VC-
PUs controlled by L1b, which forward the kicks to L1a.
Likewise, L1a forwards any virtual interrupts from the
backend to L1b, which injects the interrupt to the guest
VCPUs. Kicks from the frontend and virtual interrupts
from the backend are forwarded between L1s via L0 us-
ing the message channel.

6 VCPU Control

In single-level virtualization, L0 controls the scheduling
of guest VCPUs. In nested virtualization, L0 delegates
guest VCPU scheduling to an L1. The L1 schedules
guest VCPUs on its own VCPUs and L0 schedules the
L1’s VCPUs on PCPUs. This hierarchical scheduling
provides the L1 some degree of control over customized
scheduling for its guests.

Span virtualization can leverage either single-level or
nested VCPU scheduling depending on whether the L0
or an L1 controls a guest’s VCPUs. Our current design
requires that all VCPUs of a guest be controlled by one
of the hypervisors at any instant. However, control over
guest VCPUs can be transferred between hypervisors if
needed. When L0 initiates a Span VM, it initializes the
all the VCPUs as it would for a single-level guest. After
the guest boots up, the control of guest VCPUs can be
transferred to/from an L1 using attach/detach operations.

240 2017 USENIX Annual Technical Conference USENIX Association

Hypervisor

Guest

Backend

Frontend

Ring	BufferI/O	
Request

I/O	
ResponseKick Interrupt

Native	Device	I/O

Traditional	Para-virtual	I/O Para-virtual	I/O	in	Span	Virtualization

Guest
VCPUS

I/O	via	L0

VCPU	control

• Simple	for	now.

• All	VCPUs	controlled	by	one	hypervisor
• Either	by	L0	or	one	of	the	L1s

• Can	we	distribute	VCPUs	among	L1s?
• Possible,	but	no	good	reason	why.
• Requires	expensive	IPI	forwarding	across	L1s	
• Complicates	memory	synchronization.

Implementation

L0 L0 L0
KVM KVM KVM

Guest Guest
QEMU

L1b
L1

L1	
QEMU

Guest Guest
QEMU

Span	Guest

NestedSingle Span

L1a
QEMU

Guest	
QEMU
In	L1a

Guest
QEMU

Guest
QEMU
In	L1b

L1a

L1b	
QEMU

KVM KVM
KVM

Figure 6: Roles of QEMU (Guest Controller) and KVM
(hypervisor) for Single-level, Nested, and Span VMs.

7 Implementation Details
Platform and Modifications: Our prototype supports
running an unmodified Linux guest as a Span VM in
modes V3, V4, and V5 from Figure 1. In our test setup, the
guest runs Ubuntu 15.10 with Linux 4.2.0. The prototype
for Span virtualization is implemented by modifying the
KVM/QEMU nested virtualization support that is built
into standard Linux distributions. Currently the imple-
mentation of L0 and all L1s uses modified KVM/QEMU
hypervisors in Linux, specifically QEMU-1.2.0, kvm-
kmod-3.14.2 and Linux 3.14.2. The modifications are
different for the L0 and L1 layers. Ideally, we would
prefer L1 to be unmodified to simplify its interface with
L0. However, current hypervisors assume complete and
exclusive guest control whereas Span allows L1s to exer-
cise partial control over a subset of guest resources. Sup-
porting partial guest control necessarily requires changes
to L1 for attaching/detaching with a subset of guest re-
sources and memory event subscription. In implement-
ing L1 attach/detach operations on a guest, we tried, as
much as possible, to reuse existing implementations of
VM creation/termination operations.

Code size and memory footprint: Our implemen-
tation required about 2200 lines of code changes in
KVM/QEMU, which is roughly 980+ lines in KVM and
500+ lines in QEMU for L0, 300+ in KVM and 200+ in
QEMU for L1, and another 180+ in the virtio backend.
We disabled unnecessary kernel components in both L0
and L1 implementations to reduce their footprint. When
idle, L0 was observed to have 600MB usage at startup.
When running an idle Span guest attached to an idle L1,
L0’s memory usage increased to 1756MB after exclud-
ing usage by the guest and the L1. The L1’s initial mem-
ory usage, as measured from L0, was 1GB after exclud-
ing the guest footprint. This is an initial prototype to
validate our ideas. The footprints of L0 and L1 imple-
mentations could be further reduced using one of many
lightweight Linux distributions [14].

Guest Controller: A user-level control process,
called the Guest Controller, runs on the hypervisor along-
side each guest. In KVM/QEMU, the Guest Controller
is a QEMU process which assists the KVM hypervisor
with various control tasks on a guest, including guest ini-

tialization, I/O emulation, checkpointing, and migration.
Figure 6 shows the position of the Guest Controller in
different virtualization models. In both single-level and
nested virtualization, there is only one Guest Controller
per guest, since each guest is completely controlled by
one hypervisor. Additionally, in the nested case, each L1
has its own Guest Controller that runs on L0. In Span vir-
tualization, each guest is associated with multiple Guest
Controllers, one per attached hypervisor. For instance,
the Span Guest in Figure 6 is associated with three Guest
Controllers, one each on L0, L1a, and L1b. During at-
tach/detach operations, the Guest Controller in an L1 ini-
tiates the mapping/unmapping of guest memory into the
L1’s address space and, if needed, acquires/releases con-
trol over the guest’s VCPU and virtual I/O devices.

Paravirtual I/O Architecture: The Guest Controller
also performs I/O emulation of virtual I/O devices con-
trolled by its corresponding hypervisor. The paravirtual
device model described in Section 5 is called virtio in
KVM/QEMU [54]. For nested guests, the virtio drivers
are used at two levels: once between L0 and each L1 and
again between an L1 and the guest. This design is also
called virtio-over-virtio. A kick is implemented in vir-
tio as a software trap from the frontend leading to a VM
exit to KVM, which delivers the kick to the Guest Con-
troller as a signal. Upon I/O completion, the Guest Con-
troller requests KVM to inject a virtual interrupt into the
guest. Kicks and interrupts are forwarded across hyper-
visors using the message channel. Redirected interrupts
are received and injected into the guest by a modified
version of KVM’s virtual IOAPIC code.

VCPU Control: The Guest Controllers in different
hypervisors communicate with the Guest Controller in
L0 to acquire or relinquish guest VCPU control. The
Guest Controller represents each guest VCPU as a user
space thread. A newly attached L1 hypervisor does not
initialize guest VCPU state from scratch. Rather, the
Guest Controller in the L1 accepts a checkpointed guest
VCPU state from its counterpart in L0 using a technique
similar to that used for live VM migration between phys-
ical hosts. After guest VCPU states are transferred from
L0 to L1, the L1 Guest Controller resumes the guest
VCPU threads while the L0 Guest Controller pauses
its VCPU threads. A VCPU detach operation similarly
transfers a checkpoint of guest VCPU states from L1 to
L0. Transfer of guest VCPU states from one L1 to an-
other is presently accomplished through a combination
of detaching the source L1 from the guest VCPUs fol-
lowed by attaching to the destination L1 (although a di-
rect transfer could be potentially more efficient).

Message Channel: The message channel between
L0 and each L1 is implemented using a combination
of hypercalls and UDP messages. Hypercalls from an
L1 to L0 are used for attach/detach operations on guest

USENIX Association 2017 USENIX Annual Technical Conference 241

• Guest:	Unmodified	Ubuntu	15.10,	Linux	4.2

• L0	and	L1
• QEMU	1.2	and	Linux	3.14.2
• Modified	nesting	support	in	KVM/QEMU
• L0	:	980+	lines	in	KVM	and	500+	lines	in	QEMU
• L1:	300+	lines	in	KVM	and	380+	in	QEMU

• Guest	controller	
• User	space	QEMU	process
• Guest	initialization,	I/O	emulation,	Control	

Transfer,	Migration,	etc

• I/O:	virtio-over-virtio
• Direct	assignment:	future	work

• Message	channel
• For	I/O	kick	and	interrupt	forwarding
• Currently	using	UDP	messages	and	hypercalls

• Control	Transfer
• Guest	VCPUs	and	virtio devices	can	be	transferred	between	L1s	and	L0
• Using	attach/detach	operations

Example	1:	Two	L1s	controlling	one	Guest

memory. UDP messages between an L1 and L0 are
used for relaying I/O requests, device interrupts, mem-
ory subscription messages, and attach/detach operations
on guest VCPU and I/O devices. UDP messages are
presently used for ease of implementation and will be
replaced by better alternatives such as hypercalls, call-
backs, or shared buffers.

8 Evaluation
We first demonstrate unmodified Span VMs that can si-
multaneously use services from multiple L1s. Next we
investigate how Span guests perform compared to tradi-
tional single-level and nested guests. Our setup consists
of a server containing dual six-core Intel Xeon 2.10 GHz
CPUs, 128GB memory and 1Gbps Ethernet. The soft-
ware configurations for L0, L1s, and Span guests are as
described earlier in Section 7. Each data point is a mean
(average) over at least five or more runs.

8.1 Span VM Usage Examples
We present three examples in which a Span VM trans-
parently utilizes services from multiple L1s. An unmod-
ified guest is controlled by three coresident hypervisors,
namely, L0, L1a, and L1b.

Use Case 1 – Network Monitoring and VM Intro-
spection: In the first use case, the two L1s passively
examine the guest state, while L0 supervises resource
control. L1a controls the guest’s virtual network device
whereas L1b controls the guest VCPUs. L1a performs
network traffic monitoring by running the tcpdump tool
to capture packets on the guest’s virtual network inter-
face. Here we use tcpdump as a stand-in for other more
complex packet filtering and analysis tools.

L1b performs VM introspection (VMI) using a tool
called Volatility [3] which continuously inspects a
guest’s memory using a utility such as pmemsave to
extract an accurate list of all processes running inside
the guest. The guest OS is infected by a rootkit, Ker-
nel Beast [38], which can hide malicious activity and
present an inaccurate process list to the compromised
guest. Volatility, running in L1b, can nevertheless extract
an accurate guest process list using VM introspection.

Figure 7 shows a screenshot, where the top window
shows the tcpdump output in L1a, specifically the SSH
traffic from the guest. The bottom right window shows
that the rootkit KBeast in the guest OS hides a process
evil, i.e. it prevents the process evil from being listed
using the ps command in the guest. The bottom left win-
dow shows that Volatility, running in L1b, successfully
detects the process evil hidden by the KBeast rootkit in
the guest.

This use case highlights several salient features of our
design. First, an unmodified guest executes correctly

L1a: Network Monitoring

L1b: Volatility

Guest infected
with KBeast

Figure 7: A screenshot of Span VM simultaneously us-
ing services from two L1s.

even though its resources are controlled by multiple hy-
pervisors. Second, an L1 can transparently examine
guest memory. Third, an L1 controlling a guest virtual
device (here network interface) can examine all I/O re-
quests specific to the device even if the I/O requests are
initiated from guest VCPUs controlled by another hyper-
visor. Thus an I/O device can be delegated to an L1 that
does not control the guest VCPUs.

Use Case 2 – Guest Mirroring and VM Introspec-
tion: In this use case, we demonstrate an L1 that sub-
scribes to guest memory events from L0. Hypervisors
can provide a high availability service that protects un-
modified guests from a failure of the physical machine.
Solutions, such as Remus [24], typically work by con-
tinually transferring live incremental checkpoints of the
guest state to a remote backup server, an operation that
we call guest mirroring. When the primary VM fails, its
backup image is activated, and the VM continues run-
ning as if failure never happened. To checkpoint incre-
mentally, hypervisors typically use a feature called dirty
page tracking. The hypervisor maintains a dirty bitmap,
i.e. the set of pages that were dirtied since the last check-
point. The dirty bitmap is constructed by marking all
guest pages read-only in the EPT and recording dirtied
pages upon write traps. The pages listed in the dirty
bitmap are incrementally copied to the backup server.

As a first approximation of guest mirroring, we mod-
ified the pre-copy live migration code in KVM/QEMU
to periodically copy all dirtied guest pages to a backup
server at a given frequency. In our setup, L1a mirrors a
Span guest while L1b runs Volatility and controls guest
VCPUs. L1a uses memory event subscription to track
write events, construct the dirty bitmap, and periodically
transfer any dirty pages to the backup server. We mea-
sured the average bandwidth reported by the iPerf [1]
client benchmark running in the guest when L1a mir-
rors the guest memory at different frequencies. When
guest mirroring happens every 12 seconds, iPerf delivers
800Mbps average bandwidth which is about the same as

242 2017 USENIX Annual Technical Conference USENIX Association

• Guest:	Infected	with	
rootkit

• L1a:	Monitoring	
network	traffic

• L1b:	Running	VMI	
(Volatility)

Example	2:	Guest	mirroring

• L1a	runs	Volatility

• L1b	runs	Guest	Mirroring
• Periodically	copy	dirty	guest	pages
• Requires	subscription	on	write	events

• Guest	runs	iPerf
• ~800Mbps	when	mirrored	every	12	
seconds.	Same	as	standard	nested.

• ~600Mbps	every	1	second.	
• 25%	impact	with	high	frequency	dirty	
page	tracking

Guest	
Mirroring
Service

VM
Introspection

Service

L0

iPerf

L1a

Guest

VCPUS

Memory	Event	
Subscription

Incremental	copy
to	a	remote	node

L1b

Example	3:	Live	Hypervisor	Replacement
• Replace	hypervisor	underneath	a	live	Guest

• L1	runs	a	full	hypervisor
• L0	acts	as	a	thin	switching	layer

• Replacement	operation
• Attach	new	L1
• Detach	old	L1

• 740ms	replacement	latency,	including	
memory	co-mapping	

• 70ms	guest	downtime
• During	VCPU	and	I/O	state	transfer

New
Hypervisor

Old	
Hypervisor

L0	:	Switches	the	L1	Hypervisor

Guest

Macrobenchmarks Guest	Workloads
• Kernbench:	repeatedly	compiles	the	kernel
• Quicksort:	repeatedly	sorts	400MB	data
• iPerf:	Measures	bandwidth	to	another	host

Hypervisor-level	Services
• Network	monitoring	(tcpdump)
• VMI	(Volatility)

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300
CP

U
Ut

ili
za

tio
n

(%
)

Normalized Performance CPU Utilization

121.0s

134.6s
120.9s

132.0s

169.0%
152.4% 144.6% 145.5%

+- 0.2

0.5
1.1

1.0+-

+-
+-

0.9
0.6 1.8 1.2

+-
+- +- +-

(a) Kernbench

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

29.5s
31.4s

29.8s
31.24s

168.2%
150.5% 143.5% 137.0%

+- 0.0
0.1

0.5
0.4

+-
+-

+-

1.9
2.6 5.4 3.6

+-
+- +- +-

(b) Quicksort

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

942

817 809 812

209.0% 254.5% 210.0% 227.4%

+- 0

23 40 36
+- +- +-

3.9 5.6 8.6 8.0
+- +- +- +-

Mbps

Mbps MbpsMbps

(c) iPerf

Figure 9: Service Mode: Normalized performance with hypervisor-level services network monitoring and Volatility.
For single-level, L0 runs both services. For nested, L1 runs both services. For Span0 and Span1, L1a runs network
monitoring and controls the guest’s network device; L1b runs Volatility; L0 controls guest’s block device.

tio network interface with L0. We observed that if L1a
controls the guest network device as well, then iPerf in
the Span1 guest performs as well as in the nested guest.

For iPerf in service mode (Figure 9(c)), nested, Span0,
and Span1 guests perform about 14–15% worse than the
single-level guest, due to the combined effect of virtio-
over-virtio overhead and tcpdump running in L1a. Fur-
ther, for Span0, the guest VCPU is controlled by L0
whereas the network device is controlled by L1a. Thus
forwarding of I/O kicks and interrupts between L0 and
L1a via the UDP-based message channel balances out
any gains from having guest VCPUs run on L0.

Figure 8(c) shows that the average CPU utilization
increases significantly for iPerf in no-op mode – from
2.7% for the native host to 100+% for the single-level
and Span0 configurations and 180+% for the nested and
Span1 configurations. The increase appears to be due
to the virtio network device implementation in QEMU,
since we observed this higher CPU utilization even with
newer versions of (unmodified) QEMU (v2.7) and Linux
(v4.4.2). Figures 8(c) and 9(c) also show higher CPU
utilization for the nested and Span1 cases compared to
the single-level case. This is because guest VCPUs are
controlled by L1s in the nested and Span1 cases, making
nested VM exits more expensive.

8.3 Micro Benchmarks
Attach Operation: Figure 10 shows the time taken to
attach an L1 to a guest’s memory, VCPU, and I/O de-
vices as the guest memory size is increased. The time
taken to attach memory of a 1GB Span guest is about
220ms. Memory attach overhead increases with guest
size because each page that L1 has allocated for Span
needs to be remapped to the Span physical page in L0.

Attaching VCPUs to one of the L1s takes about 50ms.
Attaching virtual I/O devices takes 135ms. When I/O
control has to be transferred between hypervisors, the
VCPUs need to be paused. The VCPUs could be running
on any of the L1s and hence L0 needs to coordinate paus-
ing and resuming the VCPUs during the transfer. The

Figure 10: Overhead of attaching an L1 to a guest.
Single Nested Span

EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Table 3: Low-level latencies(µs) in Span virtualization.

detach operation for VCPUs and I/O devices has similar
overhead.

Page Fault Servicing: Table 3 shows the latency of
page fault handling and message channel. We measured
the average service times for EPT faults in Span at both
levels of nesting. It takes on the average 3.3µs to resolve
a fault caused against EPTL1 and on the average 24.1µs
to resolve a fault against the Virtual EPT. In contrast, the
corresponding values measured for the nested case are
2.8µs and 23.3µs. For the single-level case, EPT-fault
processing takes 2.4µs. The difference is due to the extra
synchronization work in the EPT-fault handler in L0.

Message Channel and Memory Events: The mes-
sage channel is used in Span virtualization to exchange
events and requests between L0 and L1s. It takes on
the average 53µs to send a message between L0 and an
L1. We also measured the overhead of notifying L1 sub-
scribers from L0 for write events on a guest page. With-
out any subscribers, the write-fault processing takes on
the average 3.5µs in L0. Notifying the write event over

244 2017 USENIX Annual Technical Conference USENIX Association

(a) Kernbench (b) Quicksort (c) iPerf

Figure 8: No-op Mode: Normalized performance when no services run in host, L0, or L1s. The L0 controls the virtio
block and network devices of the guest.

with a nested guest. When guest mirroring happens every
second, the average bandwidth drops to 600Mbps, indi-
cating a 25% performance impact of event subscription
at very high mirroring frequencies.

Use Case 3 – Proactive Refresh: Hypervisor-level
services may contain latent bugs, such as memory leaks,
or other vulnerabilities that become worse over time,
making a monolithic hypervisor unreliable for guests.
Techniques like Microreboot[18] and ReHype[43] have
been proposed to improve hypervisor availability, ei-
ther proactively or post-failure. We have already seen
how Span virtualization can compartmentalize unreliable
hypervisor-level services in an isolated deprivileged L1.
Here, we go one step further and proactively replace un-
reliable L1s with a fresh reliable instance while the guest
and the base L0 hypervisor keep running. In our setup, an
old L1 (L1a) was attached to a 3GB Span guest. To per-
form hypervisor refresh, we attached a new pre-booted
replacement hypervisor (L1b) to the guest memory. Then
L1a was detached from the guest by transferring guest
VCPU and I/O devices to L1b via L0. In our implemen-
tation, the entire refresh operation from attaching L1b to
detaching L1a completes on the average within 740ms.
Of this, 670ms are spent in attaching L1b to guest mem-
ory while the guest is running. The remaining 70ms is
the guest downtime due to the transfer of VCPU and I/O
states. Thus Span virtualization achieves sub-second L1
refresh latency. If we attach the replacement L1b to guest
memory well in advance, then the VCPU and I/O state
transfer can be triggered on-demand by events, such as
unusual memory pressure or CPU usage, yielding sub-
100ms guest downtime and event response latency. In
contrast, using pre-copy [22] to live migrate a guest from
L1a to L1b can take several seconds depending on guest
size and workload [65].

8.2 Macro Benchmarks
Here we compare the performance of macro benchmarks
in Span VM against a native host (no hypervisor), single-
level, and nested guests. Table 2 shows the memory and
processor assignments at each layer for each case. The
guest always has 3GB memory and one VCPU. L0 al-

L0 L1 L2
Mem CPUs Mem VCPUs Mem VCPUs

Host 128GB 12 N/A N/A N/A N/A
Single 128GB 12 3GB 1 N/A N/A
Nested 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB 1 on L0
Span1 128GB 12 8GB 4 3GB 1 on L1

Table 2: Memory and CPU assignments for experiments.

ways has 128GB and 12 physical CPU cores. In the
nested configuration, L1 has 16GB memory and 8 VC-
PUs. The guest VCPU in the Span0 configuration is
controlled by L0, and in Span1 by an L1. Finally, in
both Span0 and Span1, L1a and L1b each have 8GB of
memory and 4VCPUs, so their sums match the L1 in the
nested setting.

The guest runs one of the following three bench-
marks: (a) Kernbench [41] compiles the Linux kernel.
(b) Quicksort sorts 400MB of data in memory. (c) iPerf
[1] measures network bandwidth to another host.

The benchmarks run in two modes: No-op Mode,
when no hypervisor-level services run, and Service
Mode, when network monitoring and VM introspection
services run at either L0 or L1s. The figures report each
benchmark’s normalized performance against the best
case and system-wide average CPU utilization, which is
measured in L0 using the atop command each second
during experiments.

From Figures 8(a) and (b) and Figures 9(a) and (b),
in both modes for Kernbench and Quicksort, Span0
performs comparably with the single-level setting and
Span1 performs comparably with the nested setting, with
similar CPU utilization.

For iPerf in No-op mode (Figure 8(c)), we observe that
the Span1 guest experiences about 6% degradation over
the nested guest with notable bandwidth fluctuation and
7% more CPU utilization. This is because the guest’s
VCPU in Span1 is controlled by L1a, but the guest’s
network device is controlled by L0. Hence, guest I/O
requests (kicks) and responses are forwarded from L1a
to L0 via the message channel. The message channel
is currently implemented using UDP messages, which
compete with guest’s iPerf client traffic on the L1’s vir-

USENIX Association 2017 USENIX Annual Technical Conference 243

Macrobenchmarks

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300
CP

U
Ut

ili
za

tio
n

(%
)

Normalized Performance CPU Utilization

121.0s

134.6s
120.9s

132.0s

169.0%
152.4% 144.6% 145.5%

+- 0.2

0.5
1.1

1.0+-

+-
+-

0.9
0.6 1.8 1.2

+-
+- +- +-

(a) Kernbench

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

29.5s
31.4s

29.8s
31.24s

168.2%
150.5% 143.5% 137.0%

+- 0.0
0.1

0.5
0.4

+-
+-

+-

1.9
2.6 5.4 3.6

+-
+- +- +-

(b) Quicksort

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

942

817 809 812

209.0% 254.5% 210.0% 227.4%

+- 0

23 40 36
+- +- +-

3.9 5.6 8.6 8.0
+- +- +- +-

Mbps

Mbps MbpsMbps

(c) iPerf

Figure 9: Service Mode: Normalized performance with hypervisor-level services network monitoring and Volatility.
For single-level, L0 runs both services. For nested, L1 runs both services. For Span0 and Span1, L1a runs network
monitoring and controls the guest’s network device; L1b runs Volatility; L0 controls guest’s block device.

tio network interface with L0. We observed that if L1a
controls the guest network device as well, then iPerf in
the Span1 guest performs as well as in the nested guest.

For iPerf in service mode (Figure 9(c)), nested, Span0,
and Span1 guests perform about 14–15% worse than the
single-level guest, due to the combined effect of virtio-
over-virtio overhead and tcpdump running in L1a. Fur-
ther, for Span0, the guest VCPU is controlled by L0
whereas the network device is controlled by L1a. Thus
forwarding of I/O kicks and interrupts between L0 and
L1a via the UDP-based message channel balances out
any gains from having guest VCPUs run on L0.

Figure 8(c) shows that the average CPU utilization
increases significantly for iPerf in no-op mode – from
2.7% for the native host to 100+% for the single-level
and Span0 configurations and 180+% for the nested and
Span1 configurations. The increase appears to be due
to the virtio network device implementation in QEMU,
since we observed this higher CPU utilization even with
newer versions of (unmodified) QEMU (v2.7) and Linux
(v4.4.2). Figures 8(c) and 9(c) also show higher CPU
utilization for the nested and Span1 cases compared to
the single-level case. This is because guest VCPUs are
controlled by L1s in the nested and Span1 cases, making
nested VM exits more expensive.

8.3 Micro Benchmarks
Attach Operation: Figure 10 shows the time taken to
attach an L1 to a guest’s memory, VCPU, and I/O de-
vices as the guest memory size is increased. The time
taken to attach memory of a 1GB Span guest is about
220ms. Memory attach overhead increases with guest
size because each page that L1 has allocated for Span
needs to be remapped to the Span physical page in L0.

Attaching VCPUs to one of the L1s takes about 50ms.
Attaching virtual I/O devices takes 135ms. When I/O
control has to be transferred between hypervisors, the
VCPUs need to be paused. The VCPUs could be running
on any of the L1s and hence L0 needs to coordinate paus-
ing and resuming the VCPUs during the transfer. The

Figure 10: Overhead of attaching an L1 to a guest.
Single Nested Span

EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Table 3: Low-level latencies(µs) in Span virtualization.

detach operation for VCPUs and I/O devices has similar
overhead.

Page Fault Servicing: Table 3 shows the latency of
page fault handling and message channel. We measured
the average service times for EPT faults in Span at both
levels of nesting. It takes on the average 3.3µs to resolve
a fault caused against EPTL1 and on the average 24.1µs
to resolve a fault against the Virtual EPT. In contrast, the
corresponding values measured for the nested case are
2.8µs and 23.3µs. For the single-level case, EPT-fault
processing takes 2.4µs. The difference is due to the extra
synchronization work in the EPT-fault handler in L0.

Message Channel and Memory Events: The mes-
sage channel is used in Span virtualization to exchange
events and requests between L0 and L1s. It takes on
the average 53µs to send a message between L0 and an
L1. We also measured the overhead of notifying L1 sub-
scribers from L0 for write events on a guest page. With-
out any subscribers, the write-fault processing takes on
the average 3.5µs in L0. Notifying the write event over

244 2017 USENIX Annual Technical Conference USENIX Association

(a) Kernbench (b) Quicksort (c) iPerf

Figure 8: No-op Mode: Normalized performance when no services run in host, L0, or L1s. The L0 controls the virtio
block and network devices of the guest.

with a nested guest. When guest mirroring happens every
second, the average bandwidth drops to 600Mbps, indi-
cating a 25% performance impact of event subscription
at very high mirroring frequencies.

Use Case 3 – Proactive Refresh: Hypervisor-level
services may contain latent bugs, such as memory leaks,
or other vulnerabilities that become worse over time,
making a monolithic hypervisor unreliable for guests.
Techniques like Microreboot[18] and ReHype[43] have
been proposed to improve hypervisor availability, ei-
ther proactively or post-failure. We have already seen
how Span virtualization can compartmentalize unreliable
hypervisor-level services in an isolated deprivileged L1.
Here, we go one step further and proactively replace un-
reliable L1s with a fresh reliable instance while the guest
and the base L0 hypervisor keep running. In our setup, an
old L1 (L1a) was attached to a 3GB Span guest. To per-
form hypervisor refresh, we attached a new pre-booted
replacement hypervisor (L1b) to the guest memory. Then
L1a was detached from the guest by transferring guest
VCPU and I/O devices to L1b via L0. In our implemen-
tation, the entire refresh operation from attaching L1b to
detaching L1a completes on the average within 740ms.
Of this, 670ms are spent in attaching L1b to guest mem-
ory while the guest is running. The remaining 70ms is
the guest downtime due to the transfer of VCPU and I/O
states. Thus Span virtualization achieves sub-second L1
refresh latency. If we attach the replacement L1b to guest
memory well in advance, then the VCPU and I/O state
transfer can be triggered on-demand by events, such as
unusual memory pressure or CPU usage, yielding sub-
100ms guest downtime and event response latency. In
contrast, using pre-copy [22] to live migrate a guest from
L1a to L1b can take several seconds depending on guest
size and workload [65].

8.2 Macro Benchmarks
Here we compare the performance of macro benchmarks
in Span VM against a native host (no hypervisor), single-
level, and nested guests. Table 2 shows the memory and
processor assignments at each layer for each case. The
guest always has 3GB memory and one VCPU. L0 al-

L0 L1 L2
Mem CPUs Mem VCPUs Mem VCPUs

Host 128GB 12 N/A N/A N/A N/A
Single 128GB 12 3GB 1 N/A N/A
Nested 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB 1 on L0
Span1 128GB 12 8GB 4 3GB 1 on L1

Table 2: Memory and CPU assignments for experiments.

ways has 128GB and 12 physical CPU cores. In the
nested configuration, L1 has 16GB memory and 8 VC-
PUs. The guest VCPU in the Span0 configuration is
controlled by L0, and in Span1 by an L1. Finally, in
both Span0 and Span1, L1a and L1b each have 8GB of
memory and 4VCPUs, so their sums match the L1 in the
nested setting.

The guest runs one of the following three bench-
marks: (a) Kernbench [41] compiles the Linux kernel.
(b) Quicksort sorts 400MB of data in memory. (c) iPerf
[1] measures network bandwidth to another host.

The benchmarks run in two modes: No-op Mode,
when no hypervisor-level services run, and Service
Mode, when network monitoring and VM introspection
services run at either L0 or L1s. The figures report each
benchmark’s normalized performance against the best
case and system-wide average CPU utilization, which is
measured in L0 using the atop command each second
during experiments.

From Figures 8(a) and (b) and Figures 9(a) and (b),
in both modes for Kernbench and Quicksort, Span0
performs comparably with the single-level setting and
Span1 performs comparably with the nested setting, with
similar CPU utilization.

For iPerf in No-op mode (Figure 8(c)), we observe that
the Span1 guest experiences about 6% degradation over
the nested guest with notable bandwidth fluctuation and
7% more CPU utilization. This is because the guest’s
VCPU in Span1 is controlled by L1a, but the guest’s
network device is controlled by L0. Hence, guest I/O
requests (kicks) and responses are forwarded from L1a
to L0 via the message channel. The message channel
is currently implemented using UDP messages, which
compete with guest’s iPerf client traffic on the L1’s vir-

USENIX Association 2017 USENIX Annual Technical Conference 243

Guest	Workloads
• Kernbench:	repeatedly	compiles	the	kernel
• Quicksort:	repeatedly	sorts	400MB	data
• iPerf:	Measures	bandwidth	to	another	host

Hypervisor-level	Services
• Network	monitoring	(tcpdump)
• VMI	(Volatility)

Macrobenchmarks

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300
CP

U
Ut

ili
za

tio
n

(%
)

Normalized Performance CPU Utilization

121.0s

134.6s
120.9s

132.0s

169.0%
152.4% 144.6% 145.5%

+- 0.2

0.5
1.1

1.0+-

+-
+-

0.9
0.6 1.8 1.2

+-
+- +- +-

(a) Kernbench

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

29.5s
31.4s

29.8s
31.24s

168.2%
150.5% 143.5% 137.0%

+- 0.0
0.1

0.5
0.4

+-
+-

+-

1.9
2.6 5.4 3.6

+-
+- +- +-

(b) Quicksort

Single Nested Span0 Span10

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
Pe

rfo
rm

an
ce

0

50

100

150

200

250

300

CP
U

Ut
ili

za
tio

n
(%

)

Normalized Performance CPU Utilization

942

817 809 812

209.0% 254.5% 210.0% 227.4%

+- 0

23 40 36
+- +- +-

3.9 5.6 8.6 8.0
+- +- +- +-

Mbps

Mbps MbpsMbps

(c) iPerf

Figure 9: Service Mode: Normalized performance with hypervisor-level services network monitoring and Volatility.
For single-level, L0 runs both services. For nested, L1 runs both services. For Span0 and Span1, L1a runs network
monitoring and controls the guest’s network device; L1b runs Volatility; L0 controls guest’s block device.

tio network interface with L0. We observed that if L1a
controls the guest network device as well, then iPerf in
the Span1 guest performs as well as in the nested guest.

For iPerf in service mode (Figure 9(c)), nested, Span0,
and Span1 guests perform about 14–15% worse than the
single-level guest, due to the combined effect of virtio-
over-virtio overhead and tcpdump running in L1a. Fur-
ther, for Span0, the guest VCPU is controlled by L0
whereas the network device is controlled by L1a. Thus
forwarding of I/O kicks and interrupts between L0 and
L1a via the UDP-based message channel balances out
any gains from having guest VCPUs run on L0.

Figure 8(c) shows that the average CPU utilization
increases significantly for iPerf in no-op mode – from
2.7% for the native host to 100+% for the single-level
and Span0 configurations and 180+% for the nested and
Span1 configurations. The increase appears to be due
to the virtio network device implementation in QEMU,
since we observed this higher CPU utilization even with
newer versions of (unmodified) QEMU (v2.7) and Linux
(v4.4.2). Figures 8(c) and 9(c) also show higher CPU
utilization for the nested and Span1 cases compared to
the single-level case. This is because guest VCPUs are
controlled by L1s in the nested and Span1 cases, making
nested VM exits more expensive.

8.3 Micro Benchmarks
Attach Operation: Figure 10 shows the time taken to
attach an L1 to a guest’s memory, VCPU, and I/O de-
vices as the guest memory size is increased. The time
taken to attach memory of a 1GB Span guest is about
220ms. Memory attach overhead increases with guest
size because each page that L1 has allocated for Span
needs to be remapped to the Span physical page in L0.

Attaching VCPUs to one of the L1s takes about 50ms.
Attaching virtual I/O devices takes 135ms. When I/O
control has to be transferred between hypervisors, the
VCPUs need to be paused. The VCPUs could be running
on any of the L1s and hence L0 needs to coordinate paus-
ing and resuming the VCPUs during the transfer. The

Figure 10: Overhead of attaching an L1 to a guest.
Single Nested Span

EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Table 3: Low-level latencies(µs) in Span virtualization.

detach operation for VCPUs and I/O devices has similar
overhead.

Page Fault Servicing: Table 3 shows the latency of
page fault handling and message channel. We measured
the average service times for EPT faults in Span at both
levels of nesting. It takes on the average 3.3µs to resolve
a fault caused against EPTL1 and on the average 24.1µs
to resolve a fault against the Virtual EPT. In contrast, the
corresponding values measured for the nested case are
2.8µs and 23.3µs. For the single-level case, EPT-fault
processing takes 2.4µs. The difference is due to the extra
synchronization work in the EPT-fault handler in L0.

Message Channel and Memory Events: The mes-
sage channel is used in Span virtualization to exchange
events and requests between L0 and L1s. It takes on
the average 53µs to send a message between L0 and an
L1. We also measured the overhead of notifying L1 sub-
scribers from L0 for write events on a guest page. With-
out any subscribers, the write-fault processing takes on
the average 3.5µs in L0. Notifying the write event over

244 2017 USENIX Annual Technical Conference USENIX Association

(a) Kernbench (b) Quicksort (c) iPerf

Figure 8: No-op Mode: Normalized performance when no services run in host, L0, or L1s. The L0 controls the virtio
block and network devices of the guest.

with a nested guest. When guest mirroring happens every
second, the average bandwidth drops to 600Mbps, indi-
cating a 25% performance impact of event subscription
at very high mirroring frequencies.

Use Case 3 – Proactive Refresh: Hypervisor-level
services may contain latent bugs, such as memory leaks,
or other vulnerabilities that become worse over time,
making a monolithic hypervisor unreliable for guests.
Techniques like Microreboot[18] and ReHype[43] have
been proposed to improve hypervisor availability, ei-
ther proactively or post-failure. We have already seen
how Span virtualization can compartmentalize unreliable
hypervisor-level services in an isolated deprivileged L1.
Here, we go one step further and proactively replace un-
reliable L1s with a fresh reliable instance while the guest
and the base L0 hypervisor keep running. In our setup, an
old L1 (L1a) was attached to a 3GB Span guest. To per-
form hypervisor refresh, we attached a new pre-booted
replacement hypervisor (L1b) to the guest memory. Then
L1a was detached from the guest by transferring guest
VCPU and I/O devices to L1b via L0. In our implemen-
tation, the entire refresh operation from attaching L1b to
detaching L1a completes on the average within 740ms.
Of this, 670ms are spent in attaching L1b to guest mem-
ory while the guest is running. The remaining 70ms is
the guest downtime due to the transfer of VCPU and I/O
states. Thus Span virtualization achieves sub-second L1
refresh latency. If we attach the replacement L1b to guest
memory well in advance, then the VCPU and I/O state
transfer can be triggered on-demand by events, such as
unusual memory pressure or CPU usage, yielding sub-
100ms guest downtime and event response latency. In
contrast, using pre-copy [22] to live migrate a guest from
L1a to L1b can take several seconds depending on guest
size and workload [65].

8.2 Macro Benchmarks
Here we compare the performance of macro benchmarks
in Span VM against a native host (no hypervisor), single-
level, and nested guests. Table 2 shows the memory and
processor assignments at each layer for each case. The
guest always has 3GB memory and one VCPU. L0 al-

L0 L1 L2
Mem CPUs Mem VCPUs Mem VCPUs

Host 128GB 12 N/A N/A N/A N/A
Single 128GB 12 3GB 1 N/A N/A
Nested 128GB 12 16GB 8 3GB 1
Span0 128GB 12 8GB 4 3GB 1 on L0
Span1 128GB 12 8GB 4 3GB 1 on L1

Table 2: Memory and CPU assignments for experiments.

ways has 128GB and 12 physical CPU cores. In the
nested configuration, L1 has 16GB memory and 8 VC-
PUs. The guest VCPU in the Span0 configuration is
controlled by L0, and in Span1 by an L1. Finally, in
both Span0 and Span1, L1a and L1b each have 8GB of
memory and 4VCPUs, so their sums match the L1 in the
nested setting.

The guest runs one of the following three bench-
marks: (a) Kernbench [41] compiles the Linux kernel.
(b) Quicksort sorts 400MB of data in memory. (c) iPerf
[1] measures network bandwidth to another host.

The benchmarks run in two modes: No-op Mode,
when no hypervisor-level services run, and Service
Mode, when network monitoring and VM introspection
services run at either L0 or L1s. The figures report each
benchmark’s normalized performance against the best
case and system-wide average CPU utilization, which is
measured in L0 using the atop command each second
during experiments.

From Figures 8(a) and (b) and Figures 9(a) and (b),
in both modes for Kernbench and Quicksort, Span0
performs comparably with the single-level setting and
Span1 performs comparably with the nested setting, with
similar CPU utilization.

For iPerf in No-op mode (Figure 8(c)), we observe that
the Span1 guest experiences about 6% degradation over
the nested guest with notable bandwidth fluctuation and
7% more CPU utilization. This is because the guest’s
VCPU in Span1 is controlled by L1a, but the guest’s
network device is controlled by L0. Hence, guest I/O
requests (kicks) and responses are forwarded from L1a
to L0 via the message channel. The message channel
is currently implemented using UDP messages, which
compete with guest’s iPerf client traffic on the L1’s vir-

USENIX Association 2017 USENIX Annual Technical Conference 243

Guest	Workloads
• Kernbench:	repeatedly	compiles	the	kernel
• Quicksort:	repeatedly	sorts	400MB	data
• iPerf:	Measures	bandwidth	to	another	host

Hypervisor-level	Services
• Network	monitoring	(tcpdump)
• VMI	(Volatility)

Microbenchmarks

(a) Kernbench (b) Quicksort (c) iPerf

Figure 9: Service Mode: Normalized performance with hypervisor-level services network monitoring and Volatility.
For single-level, L0 runs both services. For nested, L1 runs both services. For Span0 and Span1, L1a runs network
monitoring and controls the guest’s network device; L1b runs Volatility; L0 controls guest’s block device.

tio network interface with L0. We observed that if L1a
controls the guest network device as well, then iPerf in
the Span1 guest performs as well as in the nested guest.

For iPerf in service mode (Figure 9(c)), nested, Span0,
and Span1 guests perform about 14–15% worse than the
single-level guest, due to the combined effect of virtio-
over-virtio overhead and tcpdump running in L1a. Fur-
ther, for Span0, the guest VCPU is controlled by L0
whereas the network device is controlled by L1a. Thus
forwarding of I/O kicks and interrupts between L0 and
L1a via the UDP-based message channel balances out
any gains from having guest VCPUs run on L0.

Figure 8(c) shows that the average CPU utilization
increases significantly for iPerf in no-op mode – from
2.7% for the native host to 100+% for the single-level
and Span0 configurations and 180+% for the nested and
Span1 configurations. The increase appears to be due
to the virtio network device implementation in QEMU,
since we observed this higher CPU utilization even with
newer versions of (unmodified) QEMU (v2.7) and Linux
(v4.4.2). Figures 8(c) and 9(c) also show higher CPU
utilization for the nested and Span1 cases compared to
the single-level case. This is because guest VCPUs are
controlled by L1s in the nested and Span1 cases, making
nested VM exits more expensive.

8.3 Micro Benchmarks
Attach Operation: Figure 10 shows the time taken to
attach an L1 to a guest’s memory, VCPU, and I/O de-
vices as the guest memory size is increased. The time
taken to attach memory of a 1GB Span guest is about
220ms. Memory attach overhead increases with guest
size because each page that L1 has allocated for Span
needs to be remapped to the Span physical page in L0.

Attaching VCPUs to one of the L1s takes about 50ms.
Attaching virtual I/O devices takes 135ms. When I/O
control has to be transferred between hypervisors, the
VCPUs need to be paused. The VCPUs could be running
on any of the L1s and hence L0 needs to coordinate paus-
ing and resuming the VCPUs during the transfer. The

Figure 10: Overhead of attaching an L1 to a guest.
Single Nested Span

EPT Fault 2.4 2.8 3.3
Virtual EPT Fault - 23.3 24.1
Shadow EPT Fault - 3.7 4.1
Message Channel - - 53
Memory Event Notify - - 103.5

Table 3: Low-level latencies(µs) in Span virtualization.

detach operation for VCPUs and I/O devices has similar
overhead.

Page Fault Servicing: Table 3 shows the latency of
page fault handling and message channel. We measured
the average service times for EPT faults in Span at both
levels of nesting. It takes on the average 3.3µs to resolve
a fault caused against EPTL1 and on the average 24.1µs
to resolve a fault against the Virtual EPT. In contrast, the
corresponding values measured for the nested case are
2.8µs and 23.3µs. For the single-level case, EPT-fault
processing takes 2.4µs. The difference is due to the extra
synchronization work in the EPT-fault handler in L0.

Message Channel and Memory Events: The mes-
sage channel is used in Span virtualization to exchange
events and requests between L0 and L1s. It takes on
the average 53µs to send a message between L0 and an
L1. We also measured the overhead of notifying L1 sub-
scribers from L0 for write events on a guest page. With-
out any subscribers, the write-fault processing takes on
the average 3.5µs in L0. Notifying the write event over

244 2017 USENIX Annual Technical Conference USENIX Association

Low-level	latencies	in	Span	virtualization

Related	Work
• User	space	Services

• Microkernels,	library	OS,	uDenali,	KVM/QEMU,	NOVA

• Service	VMs
• Dom0	in	Xen,	Xoar,	Self-Service	Cloud

• Nested	virtualization
• Belpaire &	Hsu,	Ford	et.	al,	Graf	&	Roedel,	Turtles
• Ravello,	XenBlanket,	Bromium,	DeepDefender,	Dichotomy

• Span	virtualization	is	the	first	to	address	multiple third-party hypervisor-level	
services	to	a	common guest

Summary:	Span	Virtualization

• We	introduced	the	concept	of	a	multi-hypervisor	virtual	machine	
• that	can	be	concurrently	controlled	by	multiple	coresident hypervisors

• Another	tool	in	a	cloud	provider’s	toolbox	
• to	offer	compartmentalized	guest-facing	third-party	services

• Future	work
• Faster	event	notification	and	processing
• Direct	device	assignment	to	L1s	or	Guest
• Possible	to	support	unmodified	L1s?

• Requires	L1s	to	support	partial	guest	control.	Current	L1s	assume	full	control.

• Code	to	be	released	after	porting	to	newer	KVM/QEMU

Single-level
Nested SpanSpan

Questions?

Backup	slides

Comparison

Level of Guest Control Impact of Service Failure Additional
Virtualized Partial or L0 Coresident Guests Performance

ISA Full Services Overheads
Single-level Yes Full Fails Fail All None
User space No Partial Protected Protected Attached Process switching
Service VM No Partial Protected Protected Attached VM switching
Nested Yes Full Protected Protected in Attached L1 switching + nesting

L1 user space
Span Yes Both Protected Protected Attached L1 switching + nesting

Table 1: Alternatives for providing multiple services to a common guest, assuming one service per user space process,
service VM, or Span L1.

L0	Hypervisor

Virtual	Guest	EPTVirtual	Guest	EPT

L1	Hypervisor(s)

Span	Guest
(unmodified)

Guest	Control	
Requester

Memory	
Manager

I/O	
Manager

VCPU	
Manager

Event	Producer/Consumer

Guest	Controller
(attach/detach/subscribe/unsubscribe)

Event	Processing
(Relay/Emulation)

Message	Channel L1	Traps Guest	
Faults

Messages Traps Fault	Handler

Memory	
Manager

I/O	
Manager
VCPU	

Manager

Figure 2: High-level architecture for Span virtualization.

space does not. Service VMs and Span virtualization iso-
late coresident services in individual VM-level compart-
ments. Thus, failure of a service VM or Span L1 does
not affect coresident services.

Finally, consider additional performance overhead
over the single-level case. User space services introduce
context switching overhead among processes. Service
VMs introduce VM context switching overhead, which
is more expensive. Nesting adds the overhead of emu-
lating privileged guest operations in L1. Span virtual-
ization uses nesting but supports partial guest control by
L1s. Hence, nesting overhead applies only to the guest
resources that an L1 controls.

3 Overview of Span Virtualization
The key design requirement for Span VMs is trans-
parency. The guest OS and its applications should re-
main unmodified and oblivious to being simultaneously
controlled by multiple hypervisors, which includes L0
and any attached L1s. Hence the guest sees a virtual re-
source abstraction that is indistinguishable from that of a
traditional (single) hypervisor. For control of individual
resources, we translate this requirement as follows.

• Memory: All hypervisors must have the same con-
sistent view of the guest memory.

• VCPUs: All guest VCPUs must be controlled by
one hypervisor at a given instant.

• I/O Devices: Different virtual I/O devices of the
same guest may be controlled exclusively by differ-

ent hypervisors at a given instant.
• Control Transfer: Control of guest VCPUs and/or

virtual I/O devices can be transferred from one hy-
pervisor to another, but only via L0.

Figure 2 shows the high-level architecture. A Span guest
begins as a single-level VM on L0. One or more L1s can
then attach to one or more guest resources and optionally
subscribe with L0 for specific guest events.

Guest Control Operations: The Guest Controller
in L0 supervises control over a guest by multiple L1s
through the following operations.

• [attach L1, Guest, Resource]: Gives L1
control over the Resource in Guest. Resources in-
clude guest memory, VCPU, and I/O devices. Con-
trol over memory is shared among multiple attached
L1s, whereas control over guest VCPUs and virtual
I/O devices is exclusive to an attached L1. Attach-
ing to guest VCPUs or I/O device resources requires
attaching to the guest memory resource.

• [detach L1, Guest, Resource]: Releases
L1’s control over Resource in Guest. Detaching
from the guest memory resource requires detaching
from guest VCPUs and I/O devices.

• [subscribe L1, Guest, Event, <GFN

Range>] Registers L1 with L0 to receive Event
from Guest. The GFN Range option specifies
the range of frames in the guest address space on
which to track the memory event. Presently we
support only memory event subscription. Other
guest events of interest could include SYSENTER
instructions, port-mapped I/O, etc.

• [unsubscribe L1, Guest, Event, <GFN

Range>] Unsubscribes L1 Guest Event.

The Guest Controller also uses administrative policies to
resolve apriori any potential conflicts over a guest con-
trol by multiple L1s. While this paper focuses on mecha-
nisms rather than specific policies, we note that the prob-
lem of conflict resolution among services is not unique to
Span. Alternative techniques also need ways to prevent
conflicting services from controlling the same guest.

USENIX Association 2017 USENIX Annual Technical Conference 237

Continuous	and	Transient	Control

Hypervisor

Guest

L1a L1b

Hypervisor

Guest

L1Guest

Continuous	Control
L1s	always	attached	to	guest

Transient	Control
L1	attaches/detaches	from	guest	as	needed

