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Abstract: Virtual Machines (VMs) have been widely adopted in cloud platforms
to improve server consolidation and reduce operating costs. VM checkpointing
is used to capture a persistent snapshot of a running VM and to later restore the
VM to a previous state. Although VM checkpointing eases system administration,
such as in recovering from a VM crash or undoing a previous VM activity, it
can also increase the risk of exposing users’ confidential data. This is because
the checkpoint may store a VM’s physical memory pages and disk contents that
contain confidential data such as clear text passwords and credit card numbers.

This paper presents the design and implementation of SPARC, a Security
and Privacy AwaRe virtual machine Checkpointing mechanism. SPARC enables
users to selectively exclude users’ confidential data within a VM from being
checkpointed. We describe the design challenges in effectively tracking and
excluding process-specific memory and disk contents from the checkpoint file
for a VM running on the commodity Linux operating system. We also present
techniques to track process dependencies due to inter-process communication and
to account for such dependencies in SPARC .
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1 Introduction

Virtualization technology is being widely adopted in grid and cloud computing platforms
to improve server consolidation and reduce operating costs. On one hand, virtual machines
(VMs) help improve security in the cloud computing infrastructure through greater isolation
and more transparent malware analysis and intrusion detection (e.g. Nguyen et al. (2009);
Oliveira and Wu (2009); Riley et al. (2008); Dinaburg et al. (2008); Dunlap et al. (2002);
Garfinkel and Rosenblum (2003); Joshi et al. (2005); Seshadri et al. (2007); Payne et al.
(2008); Kourai and Chiba (2005)). On the other hand, virtualization also gives rise to new
challenges in maintaining security and privacy in cloud computing infrastructures. Although
significant advances have been made in developing techniques to secure the execution of
VMs, a number of challenges remain unaddressed. In this paper, we present techniques to
address some of the security and privacy issues in VM checkpointing.

VM checkpointing saves a persistent snapshot (or a checkpoint) of the entire memory
and disk state of a VM in execution, which can be later used for various purposes such
as restoring the VM to a previous state, recovering a long-running process after a crash,
distributing a VM image with a preset execution state among multiple users, archiving a
VM’s execution record, conducting forensic examination, etc. Most hypervisors such as
VMware, Hyper-V, VirtualBox, KVM, and Xen, and some of the cloud platforms such as
Amazon EC2, support VM memory and/or disk checkpointing.

Despite its many benefits, VM checkpointing also has its drawbacks from a security
perspective. Checkpoints are stored on persistent storage and contain the VM’s physical
memory and disk contents at a given time instant, and hence can drastically prolong the

* This article is a revised and expanded version of a paper entitled “SPARC: A Security and Privacy Aware Virtual
Machine Checkpointing Mechanism” presented at the 10th annual ACM Workshop on Privacy in the Electronic
Society (WPES), in conjunction with the ACM Conference on Computer and Communications Security (CCS),
Chicago, USA, Oct. 17–21, 2011.
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lifetime of confidential data stored in memory and disk, such as clear text passwords, credit
card numbers, and other confidential data which would normally be quickly discarded after
usage.

We have demonstrated the vulnerability of VM checkpointing using a common
scenario of entering credit card information in a website. As shown in Figure 1,
we started the FireFox browser inside a VirtualBox VM. We then connected to
http://www.amazon.com, clicked “my account” to add credit card information, entered
9149239648 in the credit card number field, and then performed checkpointing. When
searching through the checkpoint file with a hex editor, we were able to locate the credit
card number we had entered earlier. In some of our experiments, the checkpoint file
contains the string ”addCreditCardNumber=9149239648”, which can enable an attacker to

Checkpoint (with or without 

http://www.amazon.com

p (
closing FireFox) Search for 

“CreditCard”

Figure 1 A scenario where the credit card number
is checkpointed.

locate the credit card number easily by
searching for the string “CreditCard”
in the checkpoint. Furthermore, we
found that even if the checkpointing is
performed after the browser terminates,
the credit card number can still be located
in the checkpoint file, likely because
the browser’s memory was not cleared
after the browser terminated. In other
words, the common advice to “close your
browser after logging out” may give users
a false sense of security. Many users
are not aware that their input data may
still reside in memory even after the
application that has processed such data
terminates. Such users may mistakenly
assume that checkpointing the VM is
safe simply because the application has
terminated.

Besides memory, even checkpointing a VM’s disk may also store users’ confidential
data in the snapshot. For example, Balduzzi et al. (2012) analyzed 5303 public Amazon EC2
snapshots and found that many of them contain sensitive information such as passwords,
browser history, and deleted files.

Previous work on minimizing the data lifetime (e.g. Garfinkel et al. (2004); Chow et al.
(2005)) has primarily focused on clearing the deallocated memory. However, this does not
prevent memory pages from being checkpointed before they are deallocated. Garfinkel and
Rosenblum (2005) and VMware ace proposed to protect the checkpointed information by
encrypting the checkpoint files. Encrypting the checkpoint can help protect confidential data
if the data is needed after the restoration of the VM. However, encrypting the checkpoint
is not suitable to protect confidential data that should be quickly discarded after its use due
to the following reasons: (1) it still prolongs the lifetime of confidential data that should
normally be quickly destroyed after use, (2) when a checkpointed VM is restored, the
confidential data will be decrypted and loaded into the memory of the VM, thus making it
vulnerable again, and (3) the checkpoint may be shared among multiple users (for example,
among multiple programmers for the purpose of software development and debugging) and
encryption does not prevent users who share the checkpoint from accessing the confidential
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data. It is also insufficient to encrypt just the memory containing the confidential data
because VM checkpointing can occur just when a program decrypts the data.

In this paper, we present SPARC, a Security and Privacy AwaRe virtual machine
Checkpointing mechanism, which enables users to exclude applications and disk contents
that contain users’ confidential data from being checkpointed without affecting the current
execution of applications. Our main contributions are summarized below.

• We have developed techniques for excluding applications and terminals that may
process users’ confidential data from being checkpointed. We have implemented a
prototype based on the VirtualBox 3.1.2_OSE hypervisor and Ubuntu Linux 9.10
guest. Our experimental results show that, our techniques impose only 1%− 5.3%
checkpointing overhead with common application workloads, when a single process
is excluded from memory checkpointing.

• We have developed techniques to track process dependencies due to inter-process
communication by using hooks in the guest kernel. SPARC accounts for such
dependencies during VM checkpointing and restoration to prevent the leakage of
confidential user data and to maintain system stability. Our experimental results show
that, it takes 0.01 - 0.52 millisecond to detect one dependency.

• We have developed techniques to identify disk contents that may contain confidential
data and to exclude them from being checkpointed.

Organization

The rest of this chapter is organized as follows. Section 2 provides a threat model. Section 3
presents techniques for excluding the entire memory footprint of user applications and
terminal processes from being checkpointed and presents the experimental results. Section 4
describes techniques for excluding disk contents that may store confidential data from being
checkpointed. Section 5 gives the related work. Section 6 concludes the paper.

2 Assumptions and Threat Model

Our proposed research is based on the following assumptions and threat model. We assume
that the hypervisor, the guest OS in the target VM, the checkpointer, and user applications
are not compromised before and during checkpointing. The checkpoint may be stored on
the physical machine on which the VM is checkpointed or stored on a remote storage. We
also assume that anytime after the VM is checkpointed, the attacker may gain access to the
checkpoint, either by compromising the storage containing the checkpoint, or because the
checkpoint was made publicly available. In order to obtain the confidential data stored in the
checkpoint, the attacker may subsequently study the checkpoint, copy the checkpoint to a
remote machine for later analysis, or restore the VM from the checkpoint. The attacker may
also modify the checkpoint, delete the checkpoint, send the checkpoint to other unauthorized
users, or make the checkpoint publicly available.

In this paper, we consider the inter-process communication within the same VM, but not
that among different VMs or different physical machines. For example, we do not consider
the case where the confidential data is sent from one physical machine to a VM on another
physical machine, which is then checkpointed.
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(a)

(b)

Figure 2 VM restored using (a) VirtualBox’s default checkpointing mechanism; and (b) SPARC
with FireFox excluded.

3 Privacy-Aware Virtual Machine Memory Checkpointing

3.1 Excluding A Single Process and Terminal

This section presents techniques for excluding a single application as well as the terminal
on which the application is running from being checkpointed. The key idea is to identify
memory pages of the application and the terminal that store confidential data and to exclude
them from being checkpointed. The key challenge is to exhaustively exclude all memory
locations in the VM that contain confidential data, while at the same time, ensuring that the
VM’s stability and consistency are maintained when the VM is restored from the checkpoint.

3.1.1 Excluding a Single Application from Being Checkpointed

This section presents the memory checkpointing mechanism in SPARC , which enables users
to exclude memory pages of applications that may process confidential data (e.g. FireFox,
Internet Explorer, Email clients, etc) from being checkpointed. Although our techniques
are presented in the context of VirtualBox memory checkpointing, they are applicable to
all hypervisors.

Consider an example where a user has entered a credit card number into the FireFox
web browser as shown in Figure 2(a). If the user performs checkpointing after the credit
card number is entered, then the credit card number will be stored in the checkpoint.
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Figure 2(b) gives the screenshot of the VM restored using SPARC in which FireFox and the
data processed by FireFox are excluded from being checkpointed. Note that SPARC will
not affect the current execution of FireFox since the corresponding memory pages are not
cleared from the RAM of the executing VM.

Guest Service Guest 
Process

Virtual Machine
Guest 

ProcessProcess

Guest OS Kernel

Process

Custom Syscall procfs

Memory

Hypervisor
Checkpointer

snapshot 

Host Service p

Host OS Kernel

Figure 3 The architecture of memory checkpointing in
SPARC .

Figure 3 gives the high-level
architecture of SPARC. First, the
user selects an application that he
or she wishes to exclude from being
checkpointed. Next, a special process
called the guest service inside the
VM collects physical addresses of
memory pages that belong to the
application being excluded from the
VM checkpoint. When checkpointing
is initiated, a process in the host
system, called the host service,
requests the guest service to provide
the physical addresses of memory
pages that need to be excluded. The
host service then relays the addresses
to the checkpointer in the hypervisor,

which in turn clears the specified pages in the checkpoint file. The pseudocode illustrating
our privacy-preserving checkpointing mechanism is given in Figure 4.

Excluding process physical memory

Below, we describe how SPARC identifies memory pages that belong to a process with ID
pid and excludes those pages from being checkpointed. First, the guest service invokes a
system call a that locates the process descriptor (i.e. struct task_struct) associated
with the process, which links together all information of a process such as memory, opened
files, associated terminal, etc.. From the process descriptor, we obtain a memory descriptor
(struct mm_struct) which contains the starting and ending addresses of each segment
(e.g. program code segment, heap segment, stack segment etc.) of the process virtual
memory.

Next, the guest service breaks up the memory of each segment into its constituent virtual
pages and converts the virtual address of each page into the physical address based on file
/proc/pid/pagemap in the process file system (procfs), which is a virtual file system
that enables access and modification of kernel parameters from the user space through a file-
like interface. To avoid affecting other processes in the system, we do not exclude resident
pages that are being mapped more than once; such pages can be identified by checking the
file /proc/kpagecount that records the number of times each physical page has been
mapped. We also do not exclude segments representing executable images because such
segments do not contain confidential data and clearing them may affect processes that share
the same in-memory executable image. In addition, we skip over segments representing
memory-mapped files (e.g. libraries) because clearing such segments may affect processes
that map the same files into their memory.

aSystem calls have been used for ease of prototyping and can be easily replaced with a more transparent and
extensible ioctl interface.
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priv_checkpoint(proc){
the guest service freezes all user-space processes in the guest OS except the guest 
iservice;
the guest service collects the set of virtual addresses va of all memory pages

belonging to the confidential process proc;
the guest service converts va to the corresponding guest physical addresses pa;
the guest service sends pa to the host service;
the host service relays pa to the checkpointer;y p p ;
for every page P in the guest VM {

ad = guest physical address of page P;
if (ad pa) {checkpoint page P;}( p ) { p p g }
else{checkpoint a page containing zeros;}

}
the guest service unfreezes all user-space processes in the guest OS;

}

Figure 4 The algorithm for memory checkpointing in SPARC .

Finally, the guest service sends physical addresses of memory pages that need to be
excluded from the checkpoint to the host service, which in turn relays the addresses to the
hypervisor. Prior to saving a physical page to the checkpoint file, the hypervisor checks
if the guest physical address of the page matches one of the received addresses. If so, it
saves a page containing all 0’s. Otherwise, it saves the content of the page. This is done by
modifying the function pgmSavePages() in VirtualBox. Further, since memory pages
are constantly swapped between the disk and the physical memory, the virtual-to-physical
memory mappings of a process may change after the physical addresses are collected. We
overcome this problem by freezing all user space processes except the guest service prior
to gathering physical addresses, using the freezer subsystem of the guest kernel. When the
VM is restored, the guest service detects the restoration event and sends a SIGKILL signal
to processes whose memory contents were excluded during checkpointing. The SIGKILL
signal enables the guest kernel to clean up any residual state (other than memory) for
the excluded processes before the VM resumes. The guest service then unfreezes the all
processes and the execution proceeds as normal. In addition, we have also modified kernel
functions to clear deallocated memory pages belonging to the process prior to deallocation.

Excluding pages of a process in the page cache

Page cache is used by the kernel to speed up disk operations by caching disk data in the main
memory. If an application performs disk I/O operations, the confidential data processed by
the application may reside in the page cache. For example, we found that, when searching
for any string using the Google search engine through FireFox, the string appears in the
kernel’s page cache, possibly because Google caches suggestions for frequent searches on
the local disk. Moreover, when a process terminates, the page cache may retain some of the
pages of the terminated process for a period of time in case that the same data is accessed
by another process in the near future.

SPARC excludes the cached pages of a process in the checkpoint as follows. First, it
retrieves the file descriptor table (struct file ** fd) from the process descriptor of
the process, which comprises all file descriptors belonging to the process. Next, for each file
descriptor that represents an open file, it obtains information about pages that cache data
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from the field struct address_space i_mapping. Finally, it uses this structure to
obtain page descriptors representing pages in the page cache, converts the page descriptors
to physical addresses of the pages, transfers the addresses to the host service, and clears
them.

Note that when a process closes a file descriptor, the descriptor is removed from the file
descriptor table of the process. As a result, if the process closes the descriptor prior to the
checkpointing, the above approach will fail to detect the associated pages in the page cache.
To counter this problem, whenever a file descriptor is closed, we evict and clear all pages
stored in the page cache associated with the closed file descriptor. In addition, the (cleared)
pages in the page cache may also be used by other processes. To avoid affecting processes
that rely on such pages, when the VM is restored (but before the processes are thawed), we
flush all pages used by the processes from the page cache.

Excluding pipe buffers

Pipes and FIFOs are commonly used for implementing producer/consumer relationship
between two processes. For example, the shell program makes use of pipes to connect
output of one process to the input of another through e.g. command “ls | grep myfile”.
FireFox also uses pipes to trace malloc()memory allocations. FIFOs are similar to pipes
but allow communication of two unrelated processes. For example, in a terminal, a user can
create a FIFO called myfifowith command mkfifo myfifo. Issuing command echo
“Data lifetime is important” > myfifowill write the string “Data lifetime
is important” to the buffer of myfifo. Subsequent command cat myfifo will remove
the string from the buffer of myfifo and print “Data lifetime is important” to the terminal.
FIFOs are frequently used by Google Chrome to implement communications between the
renderer process and the browser process.

Data exchanged via pipes and FIFOs flows through a pipe buffer in the kernel. As a result,
we need to sanitize pipe buffers used by the process that needs to be excluded. The pipe
buffers are sanitized as follows. First, we locate the file descriptors opened by the process that
represent pipes and FIFOs. We then retrieve the associated pipe buffer descriptors (of type
struct pipe_buffer) from each file descriptor. Finally, we retrieve the descriptors
of pages storing inter-process data from each pipe buffer descriptor and convert then into
the physical addresses of pages they represent.

Excluding socket buffers

The kernel associates each socket with a list of socket buffers (of typestruct sk_buff),
which contain data exchanged over the socket. If a process sends or receives confidential
data via an open socket (e.g. through read() and write() system calls), the data may
be stored in the sk_buff structure of the sockets used by the process. Therefore, when
excluding a process, we also detect all sockets opened by the process and sanitize the
memory pages associated with the sk_buff structure of the sockets.

Identifying file descriptors of a process that represent sockets is similar to detecting
pipes and FIFOs. First, we retrieve the socket descriptor (stored in struct socket)
from each file descriptor that represents a socket. Each socket descriptor contains structure
(struct sock) that encapsulates network layer representation of the socket. This
structure consists of the queue of socket buffers that are ready to be sent via socket (struct
sk_buff_head sk_write_queue) or have been received via socket (struct
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sk_buff_head sk_receive_queue). We then traverse the queue to determine the
physical memory address of each socket buffer that stores the data.

Preventing privacy leakage through screen display after VM restoration

If the excluded process displays confidential information, such as credit card number, on the
screen when checkpointing is performed, then the confidential information may display on
the screen for a brief moment, when the VM is restored and before the process is terminated.
To address the problem, during checkpointing, we invoke the XCreateWindow() API
provided by X-Windows to visually cover the windows of the excluded process with black
rectangles. When the checkpointing completes, the rectangles are removed and the user
continues to use the VM. When the VM is restored, the window is removed briefly after
sending the SIGKILL signals to the excluded process and unfreezing the process.

3.1.2 Excluding Terminal Applications

Applications running on terminals may display confidential data on the terminal. As a result,

TTY Driver

TTY Line Disciplines

TTY Core

Kernel

User Space

Hardware

Figure 5 Teletype (TTY)
subsystem architecture

we also need to exclude terminals on which the excluded
applications are running. In Linux, there are two main
types of terminals: virtual consoles and pseudo terminals.
Typically, a Linux system contains 7 virtual consoles
named tty1-tty7. The first 6 consoles provide a text
terminal interface consisting of the login and shell, and
the 7th console provides a graphical interface. The pseudo
terminal emulates a text terminal within some other
graphical system. A typical pseudo terminal application
such as xterm forks off a shell process (e.g. bash). When
the user runs a command (e.g. ls) on a terminal, the
shell forks off a child process and replaces the child’s
executable image with the code of the specified command.

All terminals rely on the Teletype (TTY) subsystem
in the kernel. Figure 5 gives the architecture of the TTY
subsystem in which arrows specify the flow of data. The
uppermost layer of the TTY subsystem is TTY core, which

arbitrates the flow of data between user space and TTY. The data received by the TTY core
is sent to TTY line disciplines, which convert data to a protocol specific format such as
PPP or Bluetooth. Finally, the data is sent to the TTY driver, which converts the data to
the hardware specific format and sends it to the hardware. All data received by the TTY
driver from the hardware flows back up to the line disciplines and finally to the TTY core
where it can be retrieved from the user space. Sometimes the TTY core and the TTY driver
communicate directly (Corbet et al. (2005)).

Identifying Terminal where a Process is Running

The kernel associates each process descriptor with a TTY structure (tty_struct), which
links together all information relevant to the instance of the TTY subsystem associated with
the process. We can determine the terminal on which a process is running by examining the
name field of the TTY structure. The name of the terminal is either ttyxx (if the terminal
is a virtual console) or ptsxx (if the terminal is a pseudo terminal).
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Once we identify the name of the terminal on which the process that needs to be excluded
is running, we traverse all process descriptors to detect all other processes that are running
on the same terminal and exclude them from being checkpointed. If the process is running
on a pseudo terminal, we also exclude the pseudo terminal application (e.g. xterm) as it
may contain the output of the process. The terminal application is usually not attached to the
same terminal as the process being excluded. However, it can be detected by following the
task_struct * real_parent field in the descriptor of the process running on the
terminal, which points to the process descriptor of the parent process, until the descriptor
of the terminal application is reached. The terminal application and all its descendants are
then excluded as described in Section 3.1.1.

Excluding TTY Information

We sanitize the TTY subsystem associated with the terminal by clearing buffers used at
each level of the TTY subsystem. TTY core uses specialized buffers (of type struct
tty_buffer) to store information received from the user space. TTY line disciplines
use three buffers to store the data received from the TTY driver (read_buf), the data
received from the TTY core that needs to be written to the TTY device (write_buf), and
characters received from the device that need to be echoed back to the device (echo_buf).
b

The virtual console is excluded as follows. The kernel maintains an array of structures
(struct vc vc_cons[]), representing available virtual consoles. We identify the
target console by traversing this array and comparing the number of each console against
the number of the target console. We then use the identified console structure to access
the TTY subsystem associated with the console, and clear the memory of all buffers of the
TTY subsystem. Finally, we obtain the physical addresses of the TTY buffers and send the
addresses along with buffer sizes to the host service. In our experiments, we did not find
any information buffered in the console driver.

Excluding pseudo terminals is slightly more complex than excluding virtual consoles
because we also need to sanitize the pseudo terminal driver. The pseudo terminal driver
consists of two cooperating virtual character devices: pseudo terminal master (ptm) and
pseudo terminal slave (pts). Data written to ptm is readable from pts and vice-versa.
Therefore, in a terminal emulator, a parent process can open the ptm and control the I/O
of its child processes that use the pts end as their terminal device i.e. stdin, stdout,
and stderr streams. After the TTY subsystem instances of both devices are identified,
the rest of the operations are similar to operations involved in excluding a virtual console.

In addition, sensitive data may linger in the TTY subsystem buffers even after they are
deallocated. Therefore, we modify functions that deallocate such buffers to clear them prior
to deallocation.

Experiments

We have performed the following two experiments on xterm. In the first experiment, we
ran an xterm terminal application, entered a string into the xterm, and performed the
checkpointing. The string appeared in the checkpoint file 6 times. After clearing the memory
of xterm and its child process bash, the string appeared in the checkpoint file 3 times.

bOur implementation was done on a guest VM running Ubuntu 9.10 Linux kernel version 2.6.31. In Ubuntu
Linux kernel version 3.1.1, read_buf and echo_buf are removed from tty_struct and are stored in the
structure of type n_tty_data.
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Figure 6 Experimental results of SPARC and VirtualBox’s default checkpointing mechanism.

After clearing xterm, bash, and the associated TTY buffers, the string no longer appeared
in the file.

In the second experiment, we used xterm to run the “su” program in a VM, entered
the password, and checkpointed the VM. The string appeared twice in the checkpoint file.
Clearing xterm, bash, and su processes had no effect on the number of appearances of
the string. The string disappeared after we cleared the TTY buffers.

3.1.3 Experimental Results

This section presents the results of experiments done to evaluate the performance of SPARC
on a number of applications that may process users’ confidential data. Such applications
include FireFox web browser 3.5.3, ThunderBird email client 2.0.0.24, Evince document
viewer 2.28.2, Gedit text editor 2.28, OpenOffice Writer word processor 3.1.1, Skype VOIP
application 2.1.0.81, Gnote desktop notes software 0.5.2, and xterm terminal emulator 2.43.
All experiments were conducted on a host system with Intel Dual CPU 2.26GHz processor
and 2GB of RAM, and running Ubuntu Linux 10.04 kernel version 2.6.32, and a guest VM
with 800MB of memory, a single processor, and Ubuntu Linux 9.10 kernel version 2.6.31.

Note that the time it takes for VirtualBox to perform checkpointing depends on the
number of memory pages that are dirty; the more the number of dirty pages, the longer
the checkpointing time. In our experiments, we first ran a program which allocates large
amounts of memory and fills the memory with random data. We then started the application
that we would like to exclude and performed checkpointing. The size of the checkpoint file
was around 630 MB on average.
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Figure 6 compares the overall execution time of performing checkpointing using
VirtualBox’s default mechanism and using SPARC, respectively. The execution time does
not include the time spent in scrubbing deallocated pages of the excluded process. We have
conducted a separate experiment to obtain the time spent in scrubbing pages, as demonstrated
later in this section. Each data point reported is an average of execution time over 5 runs.
To prevent one run from affecting the performance of subsequent runs, we deleted the
previous checkpoint and rebooted the VM before we started a new run. Our experimental
results show that, SPARC imposes 0.5%− 7.0% overhead on checkpointing, 1.4%− 2.5%
overhead on restoration, and 1%− 5.3% of overall overhead.

Time spent in scrubbing memory pages: We have conducted an experiment to obtain the
time spent in scrubbing 1000 pages. In our experiment, we allocated 1000 memory pages
using kmalloc, filled the pages with 1’s, and then scrubbed the pages. In order to get the
precise execution time, we used a nanosecond precision kernel timer module and ran the
experiment 10 times. The experimental results show that it takes 2.78 ∗ 10(−4) seconds to
scrub 1000 pages on the average, which means that it takes an average of 278 nanoseconds
(2.78 ∗ 10(−7) seconds) to scrub one page.

3.2 Accounting for Inter-Process Communication

Processes often communicate with each other, directly or indirectly, through mechanisms
such as sockets, pipes, FIFO buffers, shared memory, files, etc. Privacy-aware checkpointing
must account for such inter-process communication (IPC) for two reasons, namely to prevent
the leakage of confidential information and to ensure system stability after restoration. An
excluded process may communicate with other processes (called peer processes) before
checkpointing or after restoration. Prior to checkpointing, the excluded process may have
communicated confidential data to peer processes. Thus, these peer processes must also be
identified and excluded from the checkpoint. After restoration, a peer process may attempt
to communicate with the excluded process, even though the latter does not exist in the
restored VM image (by definition). In addition, after restoration, a peer process may also
attempt to access files or shared memory regions that were modified by the excluded process
before checkpointing. Such files could have been rolled back to a previous ‘safe’ state by
SPARC (See Section 4), whereas such shared memory regions could have been cleared
after restoration. The above situations have the potential to affect the system stability after
restoration. This section describes how SPARC identifies and excludes peer processes prior
to checkpointing and after restoration.

3.2.1 Detecting Inter-Process Communication Prior to Checkpointing

Prior to checkpointing, our goal is to prevent the leakage of confidential data via inter-
process communication with the excluded process. To identify all peer processes prior to
checkpointing, SPARC monitors system calls using kernel’s jprobes mechanism and
analyzes this information to derive inter-process dependencies. The identified peer processes
will be excluded from being checkpointed if they are not ‘system’ processes and have
not already terminated before checkpointing. System peer processes are excluded only if
excluding such processes does not affect the stability of the system. A terminal shell (such as
bash) is an example of system processes that can be excluded. If a peer process terminates
before checkpointing, its memory footprint is cleared (zeroed out) using the techniques
described in Section 3.
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To detect communication through files, pipes, or FIFOs, we use jprobe to intercept
read(), readv(), write(), and writev() system calls. We then record the inodes
associated with file descriptors, which are passed as parameters to these system calls. If
the excluded process performs a write operation on any of these IPC objects and another
process reads the object whose inode has been recorded, then the latter process is tagged as
a peer process since it may have received confidential data from the excluded process.

Communication through sockets is detected by intercepting system calls used for
establishing connections and for sending or receiving data from a socket. Such system
calls include connect(), write(), writev(), send(), sendto(), sendmsg(),
sendfile(),read(),readv(),recv(),recvfrom(), andrecvmsg(). We then
examine the port numbers and IP addresses associated with sockets to determine peer
processes that communicate with the excluded process.

Processes may also communicate through shared memory. A process can use
shmget() system call to allocate a region of shared memory and another process can then
use shmat() system call to map the region into its virtual memory space. The mapped
region can then be read or written without using system calls (just like a process’ local
memory). We detect communication through shared memory by intercepting shmget()
and shmat() system calls and examining (key, id) associated with each shared memory
region, in which key is the the key derived from the user specified file-path, and id is
generated by the system. We then mark the shared memory regions mapped by the excluded
process based on (key, id). If a process maps the marked shared memory regions, then
it is tagged as a peer process. The pages corresponding to the shared memory region are
cleared in the checkpoint file (but not in the DRAM) and the corresponding peer processes
are also excluded from the checkpoint. Inter-process communication through semaphores
and message queues is similarly handled. Communication through semaphore is detected
by monitoring the semget() and semop() system calls and communication through
message queues is detected by monitoringmsgget(),msgsnd() andmsgrcv() system
calls. Dependencies through file locks are handled in a manner similar to semaphores, except
that we monitor flock() and fcntl() system calls.

In addition, we detect both direct and indirect communications. For example, assume
that process P1 writes to an IPC object O1, process P2 reads O1 and writes the content
of O1 to O2, and process P3 reads O2. Here P1 and P2 communicate with each other
directly, and P1 and P3 communicate with each other indirectly. Thus, if P1 is excluded
from the checkpoint, P3 is also tagged as a peer process of P1 and is excluded from the VM
checkpoint.

3.2.2 Detecting Inter-Process Communication After Restoration

Some IPC objects are persistent across process lifetimes, i.e. they allow communication
between processes even if the communicating processes do not exist and execute
concurrently. For example, shared memory objects persist across a process’ lifetime until
they are explicitly destroyed by a process. Thus an excluded process may access a shared
memory object before checkpointing and a peer process may access the same object after
restoration. The peer process may execute incorrectly because we clear the shared memory
objects accessed by the excluded process in the checkpoint file. Similarly, the excluded
process can write to a file before checkpointing and a peer process may access the file after
restoration. The peer process may execute incorrectly if SPARC had restored the file to a
known ‘safe’ state when checkpointing the disk image (Section 4).
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In this section, we describe how SPARC identifies peer processes which access IPC
objects that persist across the excluded process’ lifetime. Our basic approach is to record
all processes that exist prior to checkpointing and then terminate such processes if they
attempt to communicate with the excluded process after restoration. We now describe how
SPARC handles specific IPC objects after VM restoration.

• Files and FIFOs: When performing disk checkpointing, SPARC may exclude all files
that contain confidential data from the excluded process using the technique described
in Section 4. To detect IPC via files after restoration, we record the absolute paths of
all files written by the excluded process prior to checkpointing. After restoration, if a
process calls the open() system call with one of the recorded file paths as a target
and without O_CREAT flag set (i.e. create the file if it does not exist), then the process
is treated as a peer process and is terminated. Otherwise, if the O_CREAT flag is set,
then the corresponding file path is removed from the set of recorded file paths. If a
process that does not exist prior to checkpointing calls open() after restoration to
read a file whose path was recorded, then open returns with an error indicating that the
file cannot be accessed. FIFOs are handled similarly except that we deallocate FIFOs
just before restoration. The path of the FIFO is removed from the list of the recorded
paths if a process specifies the respective path as parameter to the mkfifo() system
call used for creating FIFOs.

• Semaphores, message queues, and shared memory: If the excluded process calls
shmget(), semget(), or msgget(), then we record the unique (key, id)
associated with the semaphore, message queue, or shared memory segment,
respectively. During restoration, we remove all semaphores, message queues, and
shared memory regions accessed by the excluded process. After restoration, if a
process makes any of the aforementioned system calls with the recorded (key, id) as a
parameter and withoutIPC_CREATflag set (which tells the system call to create object
if it does not exist), then the process is terminated. Otherwise, if the IPC_CREAT flag
is set, then the specified (key, id) is removed from the set of the recorded keys.

3.2.3 Experiments and Performance Results

Table 1 reports processes detected by our program, which have communicated with a number
of applications, when specific actions were performed on applications. The applications
include FireFox web browser 3.5.3, ThunderBird email client 2.0.0.24, Evince document
viewer 2.28.2, Gedit text editor 2.28, Vim editor 7.2, Skype VOIP application 2.1.0.81,
and xterm terminal emulator 2.28.1. Column “Action” gives the specific actions performed
on the applications and column “Communicating processes” gives the processes that have
communicated with the applications. None of the processes in the “Communicating process”
column will affect the stability of the system and hence can be safely excluded from the
checkpoint. All experiments were conducted on a host system with Intel Quadcore CPU
2GHz processor and 8GB of RAM, and running Windows 7, and a guest VirtualBox VM
with 1024MB of memory and Ubuntu Linux 9.10.

To evaluate the overhead of our program, we measure the average time spent on
intercepting system calls using jprobe and detecting processes that have communicated
with the excluded process.
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Excluded app Action Communicating processes
Gedit Edit a file f with Gedit gnome-panel, vim, bash

Save f with Gedit and then edit f with vim
Firefox Send an email in Gmail with Firefox gconfd-2, Firefox children
Evince Open a pdf file gnome-panel
Thunderbird Send an email Thunderbird children
OpenOffice Create a new file with OpenOffice Writer, soffice.bin, Xorg

save it, and then open it again
Gnome-terminal Perform a few basic terminal operations gnome-pty-helper, bash, cat

such as mkdir, cd, touch, ls cat, cd
Skype Send a text message and make a call pulseaudio, gconf-helper

Table 1 Sample processes that have communicated with the excluded application.

Communication through files: To compute the average time spent in intercepting the read
and write system calls using jprobe, we wrote a script which copies a file 100 times, and
computed the difference between the execution time of the script without and with inter-
process communication detection. We then divided the difference by 100, which is the time
spent in intercepting one read and one write system call. Our experimental results show
that intercepting read and write system calls does not impose an observable overhead to the
system.

To evaluate the overhead of detecting write-read dependencies through files, we wrote
a script in which the excluded process reads a file and writes the content of the file to a
another file. The overhead of detecting one write-read dependency is 0.25 milliseconds on
average.

Communication through sockets: In this experiment, we wrote a script in which a TCP
client connects to a TCP server 100 times. The overhead of intercepting one connect()/bind()
system call, and detecting one process dependency is 0.52 milliseconds on average.

Communication through shared memory: In this experiment, the excluded process
creates a shared memory and 100 processes access the shared memory. The overhead
of intercepting one shmget() system call and detecting one process dependency is 0.01
milliseconds on average.

4 Privacy-Aware Virtual Machine Disk Checkpointing

Virtual disk images of VMs may also be checkpointed along with the VM’s memory image.
For example, a programmer in a software development team may want to checkpoint the
disk image of his/her VM and send it to his/her team member to facilitate the software
development. There are several approaches for checkpointing disk state: (1) The VM freezes
the current disk and creates a new differencing disk to which all subsequent write operations
are redirected; (2) The VM clones the entire disk image upon every checkpointing; (3) The
VM clones the disk when checkpointing is first performed, and saves changes to the
disk incrementally in later checkpointing. The first approach is fastest and uses least
amount of disk space to store checkpoints. However, excluding the confidential data during
checkpointing results in the deletion of such data on the disk. VirtualBox checkpointing
uses the first approach and its cloning mechanism uses the second approach. Amazon EC2
uses the third approach to perform volume snapshot.
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Virtual disk may also contain sensitive data that should ideally be excluded from
checkpoints. Some cloud computing systems such as Amazon EC2 enable users to share
a disk snapshot, which increases the risk of leaking users’ private data on the disk. For
example, Balduzzi et al. (2012) analyzed 5303 Amazon public EC2 snapshots and found that
many of them contain confidential data such as private keys, passwords, browser history,
and deleted files. After being notified by the authors, Amazon published a tutorial on how
to create and share public images in a secure manner. However, this tutorial provides only
instructions on how to manually delete specific data, such as ssh keys, from disk checkpoints.

Manually excluding every single piece of confidential data from disk
images/checkpoints is neither practical nor scalable. To address this issue, we propose an
application-level approach and a file-level approach to prevent users’ confidential data
from being stored in disk checkpoints. The application-level approach enables users to
exclude applications that process confidential data and all files written by such applications
from disk checkpoints. Alternatively, during checkpointing, one could also replace all the
files modified by such applications with files that were created during installation. This
approach is independent of the format of the data (for example, whether or not the data
is stored in clear-text) and does not require users to have thorough knowledge about what
data the application may write to the disk. The file-level approach enables users to set aside
specific directories in the virtual disk’s file system to store user’s confidential data as well
as confidential data obtained from other users; such directories will not be checkpointed.
Stability and correctness could be affected if non-sensitive applications depend on the data
written to the virtual disk by a sensitive applications.

Since Virtualbox’s checkpointing mechanism does not create a new copy of the disk, our
implementation is based on Virtualbox’s cloning mechanism. Implementing the file-level
approach is straightforward and hence is not demonstrated in this section. To exclude all
the files written by an application from disk checkpoints, we have developed a user-space
daemon process to record files modified and created during the execution of an application
as follows. When the daemon process detects that there is an apt-get process running, it forks
an strace process and attaches it to the apt-get process to monitor all files created by apt-get
and its child processes. When a user performs cloning, we first use VirtualBox’s cloning
mechanism to create a raw disk image of the VM. Next, we mount the raw disk image and
use the shred program to permanently delete files modified and created during the execution
of the application. Finally, the user can either create a new VM based on the raw disk
image or attach the raw disk image to the original VM. Replacing all files modified by an
application with files that were created during the installation of the application is handled
similarly, except that (1) in addition to recording a set fset1 of all files modified and created
during the execution of the application, we also record a set fset2 of all files created during
the installation of an application, and (2) after mounting the raw disk image, we replace
files in fset2 with corresponding files in fset1 and delete files that are in fset2 \ fset1.

5 Related Work

Previous work on minimizing data lifetime (e.g.,Garfinkel et al. (2004); Chow et al. (2005);
Solomon and Russinovich (2000); Chow et al. (2004); Tang et al. (2012)) has focused on
clearing the deallocated memory (also known as memory scrubbing). However, memory
scrubbing does not solve the problem of confidential data being checkpointed before the
pages are deallocated. As a result, SPARC also clears memory pages of the excluded process
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in checkpoints. Selectively clearing memory pages during checkpointing is much more
challenging than scrubbing only deallocated memory because multiple processes may share
the same memory pages and we must ensure that excluding one process will not affect other
processes when the VM is restored.

Hu et al. (2013) presented an application-level privacy-preserving virtual machine
checkpointing mechanism, which allows applications to control the granularity at which
their confidential data is excluded from VM checkpoints. This approach, however, is not
application-transparent. Davidoff (2008) showed that RAM may retain confidential data
even after the system has been powered off. This permits cold boot memory dumping
attacks, assuming that the attacker has physical access to the machine during the limited
time when the RAM retains information without power. The problem is more severe with
VM checkpoints because the memory snapshot is saved to a persistent storage, potentially
exposing confidential data forever, and an attacker does not need physical access to the
machine.

Features protecting virtual disk, memory, and checkpoints have found their way into
research prototypes as well as commercial virtualization products. Garfinkel et al. (2003)
developed a hypervisor-based trusted computing platform, whose privacy features include
encrypted disks and the use of a secure counter to protect against file system rollback attacks.
Encrypting checkpoints has also been recommended in Garfinkel and Rosenblum (2005).
However, encrypting the checkpoint alone is insufficient because (1) it still prolongs the
lifetime of confidential data that should normally be quickly destroyed after use; (2) when
the VM is restored, the checkpoint will be decrypted and loaded into the memory of the
VM, thus exposing the confidential data again; (3) the checkpoint file may be shared by
multiple users, thus increasing the likelihood of data leakage. Garfinkel et al. (2004) also
proposes to encrypt confidential data in the memory and clear such data by discarding
the key. However, encrypting data in memory can add significant overheads to access the
information and may still expose sensitive information since VM checkpointing can occur
just when a program decrypts the data. Gallagher (1992) outlined security requirements
for reusing deallocated memory pages without risk of exposing confidential data that may
linger in memory. Our approach goes beyond it by also considering sensitive memory that
has not been deallocated.

A large body of literature considers checkpointing and replaying the execution of
processes, as means for intrusion detection, debugging, process migration, and fault
tolerance (e.g. Bozyigit and Wasiq (2001); Dunlap et al. (2002); King et al. (2005); Laadan
et al. (2010); Osman et al. (2002); Bressoud and Schneider (1995); LeBlanc and Mellor-
Crummey (1987); Xu et al. (2007)). However, none of them examine the data lifetime
implications of checkpointing.

Chen et al. (2008) proposed a mechanism called Overshadow to protect the memory
of applications from the operating system, by encrypting the memory of applications when
switching to the system context. Our approach is different from theirs by focusing on
eliminating confidential data in both user-level applications and the kernel. Ristenpart and
Yilek (2010) presented a VM reset attack in which a server may send the same randomness
(e.g. session key) to two different web servers when the victim VM is restored twice from
the same checkpoint file. Kangarlou et al. (2012) presented techniques for taking snapshots
of virtual networked infrastructures in the cloud. However, they did not address the privacy
issue of checkpoints.

Our approach for detecting inter-process communication differs from the approach
in Zheng and Nieh (2004) as follows: (1) we monitor system calls using the kernel’s
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jprobes mechanism, while they manually override the kernel’s function pointer to a
system call; (2) we consider inter-process communication through shared memory, while
they did not; (3) we develop mechanisms for detecting inter-process communication after
VM restoration; their approach cannot be directly applied to address this issue.

This paper extends Gofman et al. (2011) in several ways: (1) we have developed,
implemented, and evaluated techniques for tracking process dependencies due to inter-
process communication and accounted for such dependencies during VM checkpointing
and restoration operations; (2) we developed a privacy-aware VM disk checkpointing
mechanism; (3) we conducted experimental evaluation of the mechanism for scrubbing
memory pages; and (4) we presented a threat model and used a real-world scenario to
illustrate the vulnerability of VM checkpointing.

6 Conclusions and Future Work

This paper presents SPARC, a security and privacy aware VM checkpointing mechanism,
which enables users to selectively exclude processes, terminal applications, and disk
contents that contain users’ confidential data from being checkpointed. We have
implemented a prototype of SPARC on the VirtualBox hypervisor and Linux VM and tested
it over a number of applications. Our preliminary results show that SPARC imposes only
1%− 5.3% of overhead with common application workloads.

The techniques presented in the paper are useful when the applications within the VMs
cannot be modified. Since the semantics of the application internals are unknown, this
approach requires that the application be terminated when the VM is later restored, because
the integrity of the application cannot be guaranteed upon resumption from a sanitized
checkpoint. However, in some situations, it may be desirable to exclude only memory
locations storing confidential data, while keeping the application alive after the VM is
restored. We plan to develop techniques to address this issue. The challenges are how to
efficiently identify all memory locations and disk contents storing confidential data and
how to clear the data without crashing the process after restoration. We also plan to design a
light-weight process container that cleanly encapsulates the state of each process (or process
groups), which would help avoid scrubbing process-specific information from disparate
locations in OS memory. Finally, we will identify potential attacks that may specifically
target SPARC to hide the attacker’s activities and develop counter-measures.
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