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Abstract—Traditional metrics for live migration of virtual
machines (VM) include total migration time, downtime, network
overhead, and application degradation. In this paper, we intro-
duce a new metric, eviction time, defined as the time to evict
the entire state of a VM from the source host. Eviction time
determines how quickly the source host can be taken offline, or
the freed resources re-purposed for other VMs. In traditional
approaches for live VM migration, such as pre-copy and post-
copy, eviction time is equal to the total migration time, because
the source and destination hosts are coupled for the duration
of the migration. Eviction time increases if the destination host
is slow to receive the incoming VM, such as due to insufficient
memory or network bandwidth, thus tying up the source host.
We present a new approach, called Scatter-Gather live migration,
which reduces the eviction time when the destination host is
resource constrained. The key idea is to decouple the source
and the destination hosts. The source scatters the VM’s memory
state quickly to multiple intermediaries (hosts or middleboxes)
in the cluster. Concurrently, the destination gathers the VM’s
memory from the intermediaries using a variant of post-copy
VM migration. We have implemented a prototype of Scatter-
Gather in the KVM/QEMU platform. In our evaluations, Scatter-
Gather reduces the VM eviction time by up to a factor of 6 while
maintaining comparable total migration time against traditional
pre-copy and post-copy for a resource constrained destination.
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I. INTRODUCTION

Live migration [4], [22], [13], [15] of Virtual Machines
(VMs) is used in datacenters for consolidation, system mainte-
nance, power savings, and load balancing. Traditional metrics
that measure the performance of live VM migration include
downtime, total migration time, network traffic overhead, and
performance degradation of applications.

In this paper, we introduce a new metric, namely eviction
time, which we define as the time taken to completely elimi-
nate the state of a VM being migrated from the source host.
Quickly evicting a VM from the source host is important
in many situations. For example, administrators may want
to opportunistically save power by turning off excess server
capacity [2], [3], [26], [7], [25], quickly eliminate hotspots by
scaling out physical resources for performance assurance [14],
quickly evict a lower priority VM to accommodate other
higher priority VMs, perform emergency system maintenance,
or handle imminent failures.

In traditional live VM migration techniques [4], [22], [13],
[15], the eviction time is equal to the total migration time,

which is defined as the interval from the start of migration at
the source to the time when all VM state has been transferred
to the destination and the VM resumes execution. Since the
source host directly transfers the VM’s state to the destination
host, typically over a TCP connection, a VM cannot be
migrated faster than the slower of the two endpoints. Thus
in traditional approaches, the source and the destination are
coupled for the entire duration of VM migration.

A resource-constrained destination can throttle live mi-
gration even if the source can dedicate all of its resources
to evict the VM and the network is not a bottleneck. For
example, the eviction times can increase when the memory
is fully committed at the destination; the destination may
need to first free pages by ballooning [28], swapping, or
purging its caches, before it can accommodate the new VM.
Destination could also be running other network or CPU
intensive VMs due to which it may be unable to dedicate
sufficient reception bandwidth or processor cycles to receive
an incoming VM. Concurrent VM migrations [11], triggered
by host decommissioning or VM consolidation [7], [2] can
also increase eviction times for individual VMs.

Long eviction times can defeat the key optimization goals
of techniques that rely on full VM migration to quickly de-
provision the source. For example, techniques that migrate the
entire VM out of the source to save energy [3], [26], [7], [25]
will be less effective if the eviction takes too long. Similarly,
long eviction times can adversely affect the performance of
other higher priority VMs that remain at the source.

In this paper, we present a new approach to rapidly evict
a VM from the source when the destination host is resource
constrained. The key idea is to temporally decouple the source
and the destination hosts during migration. In other words,
the source must be able to quickly unload the VM’s state,
preferably at its maximum transmission rate, whereas the
destination should be able to retrieve and resume the VM at
its own pace as enough local resources become available.

Our first contribution in this paper is the Scatter-Gather1

live VM migration technique which reduces eviction time
by using intermediate hosts for staging the VM’s memory.
The source host scatters (or evicts) the VM’s memory to one

1Not to be confused with “Scatter-Gather I/O” [21], which refers to
reading/writing data from/to multiple buffers which are separated in memory.



or more intermediate hosts or network middleboxes. Concur-
rently, the destination host gathers the VM’s memory from
intermediate hosts. Thus the source can evict the VM at its full
speed even if the destination is slow. Since existing live mi-
gration approaches couple the source to the destination during
migration, their eviction time equals total migration time. Our
insight is that by decoupling the source and destination, and
taking advantage of resources at intermediate hosts, Scatter-
Gather migration is able to reduce eviction time, enabling
faster deprovisioning of the source. The intermediaries could
be peer hosts or network middleboxes such as network caches
or memory devices. These need not be hosts that are dedicated
for migration.

Our second contribution is to develop a variant of post-copy
migration [15], [13] in Scatter-Gather, wherein the VM’s CPU
state is first resumed at the destination and then its memory
pages are gathered from intermediate hosts through a combi-
nation of active pre-paging and demand paging. Employing a
post-copy variant, as opposed to pre-copy [4], [22], allows the
VM to quickly resume at the destination, even as its memory
is fetched from intermediate hosts.

Our third contribution is the use of a Virtualized Memory
Device (VMD) layer that aggregates the available memory
across all intermediate hosts and exports this memory via
a block device interface. The VM Migration Manager – a
user-space migration process alongside each VM at both the
source and destination – uses VMD to stage the VM’s memory
content, without having to juggle individual connections with
multiple intermediate hosts. This increases the modularity and
reduces the complexity of the overall system. To the best of
our knowledge, this is the first work to demonstrate live VM
migration using cluster-memory virtualization.

We expect that Scatter-Gather live migration will act as
another useful tool in a datacenter administrator’s toolbox that
can be employed in situations where reducing VM eviction
time is the primary concern. Our vision is that future live
VM migration mechanisms will be adaptive in nature; they
will dynamically choose from different strategies such as
pre-copy, post-copy, Scatter-Gather, gang migration [11], or
partial migration [2] that may be best suited for specific VM
workloads and system optimization goals.

II. BACKGROUND

Pre-copy Live Migration: In pre-copy [4], [22] method
of live VM migration, contents of a VM’s memory are copied
over multiple iterations from source to destination, even as
the VM is running at the source. The first iteration copies the
entire memory of the VM whereas the subsequent iterations
copy only the pages dirtied in the preceding iteration. Once the
number of dirty pages are relatively small, or a maximum num-
ber of iterations are over, the VM is suspended and the CPU
state and remaining dirty pages are transferred, after which
the VM is resumed at the destination. This window of VM’s
inactivity during migration is known as downtime. If the VM’s
workload primarily performs memory reads and the writable
working set (WWS) of the VM is small, then the downtime

will be small. However, for write-intensive workloads, when
the size of the WWS is sufficiently large, a significant number
of dirty pages will be retransmitted in successive iterations.
If the number of dirtied pages does not reduce sufficiently
before the maximum threshold of iterations is reached then a
large number of dirtied pages may be transferred during the
downtime. This also lengthens total migration time, and by
extension, eviction time, since the source and the destination
are coupled throughout the migration.

Post-copy Live Migration: In post-copy [13], [15], [20]
method of live VM migration, the VM is first suspended at
the source and the CPU state is transferred to the destination,
where the VM is resumed immediately. Subsequently, as the
VM executes at the destination, its memory pages are actively
pushed from the source – an operation known as pre-paging –
with the expectation that most pages would be received by the
destination before they are accessed by the VM. If the VM
accesses a page that was not yet received by the destination,
then the corresponding page is faulted in from the source over
the network – an event called remote page fault. The fewer the
number of remote page faults, the better the performance of
post-copy. In contrast to pre-copy, post-copy sends each page
over the network only once; this means that for write-intensive
workloads post-copy yields lower network traffic overhead.
The total migration time, and eviction time when using post-
copy are comparable or lower than pre-copy. Technically, the
downtime of post-copy is minimal since the VM’s execution
switches almost instantaneously to the destination. However,
the performance degradation may be worse than pre-copy right
after the execution switch because user-level applications in
the VM may not become responsive till their working set is
fetched from the source.

III. DEMONSTRATING THE PROBLEM

This section motivates the need for the Scatter-Gather
approach by experimentally demonstrating that eviction time
suffers when the destination host is under resource pressure.
All experiments in this section use dual quad core servers with
1.7GHz CPUs, 16GB DRAM, and 1Gbps Ethernet cards. All
servers are connected to a Nortel 4526-GTX layer-2 Ethernet
switch. Hosts run Linux kernel 2.6.32 and KVM/QEMU
1.6.50. All VMs run Linux kernel 3.2 as the guest OS. We use
the standard implementation of pre-copy live migration that
comes bundled with KVM/QEMU and the publicly available
post-copy implementation from the Yabusame [15] project.

To avoid second-order effects in measurements, we
presently disable an optimization to compress pages during
transmission, since all migration techniques, including Scatter-
Gather, can benefit from this optimization. The only reason
that we disable compression is to normalize the comparison
of different approaches in this paper; it is not meant to increase
the baseline migration times.

We demonstrate here that memory pressure at a destination
adversely affects VM eviction time using traditional pre-copy
and post-copy approaches. We migrate an idle VM with 5GB
memory size from the source to the destination. The source



12 13 14 15 16
Destination Host Memory (GB)

100

200

300

400
E
v
ic

ti
o
n
 T

im
e
 (

S
e
co

n
d
s) Pre-copy (Idle) Post-copy (Idle)

Pre-copy (Busy) Post-copy (Busy)

Fig. 1. Eviction time of a single idle VM. The destination host is either
idle or runs two busy VMs running TunkRank (indicated in parentheses). The
memory pressure at the destination is varied by setting the available DRAM in
BIOS from 12GB (high memory pressure) to 16GB (low memory pressure).

host only performs migration of an idle VM and nothing else,
whereas the destination host faces varying degrees of resource
pressure. The destination host is either idle (denoted “Idle” in
our results) or runs two VMs of 5GB memory size, each of
which runs the TunkRank graph analytics benchmark from
the CloudSuite [12] package. TunkRank is a memory and
CPU-intensive benchmark which determines a Twitter user’s
influence based on the followers. TunkRank uses a 1.3GB
Twitter database as input, which generates a runtime memory
pressure of around 4GB per VM.

We increase the available DRAM at the destination host
from 12GB to 16GB in 1GB increments (using BIOS options
at boot time), thus gradually decreasing the memory pressure.
Figure 1 plots the eviction time measured when using both pre-
copy and post-copy. When the destination host is idle, both
pre-copy and post-copy yield low eviction times. However,
when the destination host is busy running the TunkRank
workload in two VMs, the eviction time for both the migration
techniques increases by a factor of 6.3 (from 52s to 328s) as
the available DRAM is reduced from 16GB to 12GB. When
the destination doesn’t have enough free memory to store the
incoming VM’s pages, the host OS responds by swapping out
the pages of the busy VMs running TunkRank. The time spent
in reclaiming the memory pages to create free space for the
incoming VM at the destination increases the eviction time at
the source. Note that if, instead of being idle, the migrating
VM was running a write-intensive workload, then the eviction
time of pre-copy would be much worse than that of post-
copy because the eviction time of pre-copy is impacted by the
working set size of the VM.

IV. ARCHITECTURE OF SCATTER-GATHER MIGRATION

In traditional live VM migration, as shown in Figure 2, the
source would directly transfer the VM’s state to the destination
through a TCP connection, which carries both data (VM’s
memory and CPU state) and control information (handshakes,
synchronization, etc.) This direct TCP connection would last
until the destination receives the entire VM.

In the Scatter-Gather approach, as shown in Figure 3,
the source and destination exchange bulk of VM’s memory
through intermediate hosts I1 ... IN . Only the VM’s CPU
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Fig. 2. Coupling in traditional pre-copy and post-copy: The VM’s pages are
transferred through a direct TCP connection between the Migration Managers
at the source and destination hosts.

execution state, any demand-paged memory, and control in-
formation, are exchanged through a direct TCP connection
between the source and destination. This connection lasts only
until the source evicts the entire VM. The source and destina-
tion run Migration Managers for each VM being migrated. In
KVM/QEMU virtualization platform, the Migration Manager
is part of QEMU – a multi-threaded user-level process, one for
each VM, that mediates between the VM and the hypervisor
besides carrying out VM migration. A Virtualized Memory
Device (VMD) layer, aggregates the free memory of all
intermediate hosts and presents the collection as block device
to the Migration Managers at the source and the destination.
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Fig. 3. Scatter-Gather migration: VM’s pages are transferred through
intermediate hosts using VMD. A direct TCP connection between the source
and destination carries control and demand-paging information.

A. Scatter Phase

The goal of the scatter phase is to quickly evict the VM’s
memory and execution state from the source host. This phase
is executed at the source host. First, a control TCP connection
is established between the source and the destination. Next,
the VM’s CPU state is transferred to the destination where
the VM is resumed immediately. Since the VM’s memory still
resides at the source host, the VM would start generating page-
faults as it accesses its memory. The destination’s Migration
Manager sends all page-fault requests during the scatter phase
to the source’s Migration Manager over the control TCP
connection, which then responds with the faulted page. This
step is similar to the demand-paging component of traditional
post-copy migration. However, simply relying on demand-
paging would be terribly slow.

To speed up the eviction of VM’s memory, the Migration
Manager at the source also actively transfers the VM’s pages
out of the source host to intermediate hosts. The Migration
Manager opens the block device exported by the VMD as a



file and sequentially writes the VM’s memory pages to this file.
The VMD simply represents an aggregation of the memory of
intermediate hosts. Thus the VMD layer at the source “scat-
ters”, or distributes, the pages written to the block device over
the network to the intermediate hosts. For each page written to
the VMD, corresponding control information is sent directly
to the destination’s Migration Manager over the control TCP
connection. The control information consists of the address
of each page that was scattered and its status, which may
indicate if any content optimization, such as compression or
deduplication, was applied to the page. This information is
stored by the Migration Manager at the destination and used
later to gather the VM’s pages from the VMD. Once the VM’s
entire memory has been evicted to the VMD, the VM can be
deprovisioned at the source.

B. Gather Phase

The gather phase retrieves the VM’s memory pages from
the intermediate hosts and the source. This phase runs con-
currently with the scatter phase at the source. As soon as
the destination receives the VM’s execution state from the
source, it starts executing the VM. Gather phase consists of
two components: (a) pre-paging, or actively collecting, the
VM’s pages from the intermediate hosts and (b) demand-
paging the faulted pages from the source. In pre-paging,
the destination’s Migration Manager opens a block device
exported by the VMD to which the source host scatters the
VM’s memory and listens on the control TCP connection on
which the source sends information about the scattered pages.
The destination’s Migration Manager uses the per-page control
information received from the source to copy the received
pages into the VM’s memory. Thus the control TCP connection
ensures that the destination reads each page from the VMD
only after it has been written to the VMD by the source.

The demand-paging component proceeds as follows. The
gather phase overlaps with the scatter phase till the time that
the source completely evicts and deprovisions the VM. Hence,
if the VM faults on any page during this overlap time, the
destination’s Migration Manager directly requests the source
for the faulted pages. These demand-paging requests are sent
over the control TCP connection to the source which then
sends the requested page again over the TCP connection.
To reduce the latency of servicing page faults, the source’s
Migration Manager gives a higher priority to transfer the
faulted pages compared to the pages being scattered over
VMD. If the VM at the destination faults for pages after the
VM has been deprovisioned at the source, the faulted pages
are read from the VMD. Thus the pre-paging and the demand-
paging components of the gather phase proceed concurrently
in independent threads with minimal mutual interference.

C. Selection of Intermediaries

The choice of intermediaries impacts the performance of
Scatter-Gather migration. The selection should ensure that
all intermediaries collectively have sufficient excess capacity
(memory, CPU, and network bandwidth) to allow the source to

evict the VM’s memory at line speed. Intermediaries’ selection
also depends upon the context in which Scatter-Gather is used.
For instance, when used to rapidly deprovision an entire rack
of machines, the intermediaries should preferably be located at
the destination rack so that the machines in the source rack do
not participate in the gather phase and can be deprovisioned
quickly. Also note that the destination host itself could be one
of the “intermediaries” that participates in the VMD layer and
receives a subset of the pages scattered by the source. Doing
so would ensure that, in the worst case, if other intermediaries
become slow for any reason, then Scatter-Gather migration is
not slower than direct migration to the destination. Finally,
the selection scheme may depend upon the consideration of
fault-tolerance during migration wherein the VMD layer could
replicate each page at multiple intermediaries for recovery. We
leave to future work an in-depth investigation and evaluation
of various intermediary selection algorithms.

D. Alternative Designs

The approach presented in this paper uses a variant of post-
copy approach to resume the VM at the destination. Other
design alternatives are also worth discussing. First alternative
is to use a variant of pre-copy, instead of post-copy, to migrate
the VM. Specifically, the source host could use iterative pre-
copy rounds to save the VM’s memory at the intermediate
hosts, while the VM executes at the source. Concurrently,
the destination can gather the pages from the intermediate
hosts at its own pace. Thus the source and destination can
be decoupled during the pre-copy phase. Once the set of
dirty pages is small enough, the VM can be suspended, its
execution state transferred to the destination, remaining pages
retrieved from the source, and the VM resumed. The downtime
is dependent on the number of pages that need to be retrieved
by the destination from intermediate hosts in the last step; if
the source completes much faster than the destination is able
to pull pages, then downtime would be large.

To address this problem, a second alternative is to use a
hybrid of pre-copy and post-copy approaches. Specifically, the
last step of the above pre-copy-based approach can be altered
so that the the VM resumes immediately at the destination
after the CPU state is transferred. Any remaining pages at
the intermediate hosts are gathered by the destination using
post-copy (i.e. pre-paging plus demand-paging). While the
downtime of this approach would be lower than the first
alternative, eviction time would still be substantially long for
write-intensive VM workloads because the pre-copy rounds
will take a very long time to converge.

V. IMPLEMENTATION

We implement Scatter-Gather migration on KVM/QEMU
platform. As described in Section IV, the Migration Managers
at both the source and destination open the block device
exported by the VMD layer to execute the scatter and gather
phases. Below we describe implementation-specific details
related to the VMD, the Migration Managers, and a rate
limiting option at the destination during the gather phase.
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A. Virtualized Memory Device (VMD) Layer

Our implementation of VMD is a successor to our prior
work on the MemX system [10]. VMD is a distributed peer-to-
peer memory sharing system among machines in an Ethernet
network. VMD simplifies the implementation of Migration
Managers by exporting the aggregate free memory of the
intermediate hosts through a block device interface. Thus the
Migration Managers can transfer pages to/from all intermedi-
ate hosts via a single interface without knowing the identity
of the intermediaries or managing the location of each page.

VMD is implemented via two sets of Linux kernel modules
– client VMD modules that run at the source and destination
hosts, and server VMD modules at the intermediate hosts.
The server module uses the free memory of the interme-
diate hosts to store and track pages. Figure 4 shows the
interactions between the VMD clients and servers. VMD
uses a custom-designed layer-2 protocol called RMAP, that is
described in full in [10]. RMAP is a reliable message oriented
protocol. RMAP includes features such as flow control and
fragmentation-reassembly. Upon receiving a read request, the
VMD server retrieves and forwards the corresponding page to
the requesting client. The client module communicates with
several intermediate servers and forwards the read or write
request to the appropriate intermediate server. The placement
of a VM’s pages at the intermediaries is determined by
the source’s VMD client using a load-aware algorithm; the
VMD server modules periodically report their excess memory
capacity and reception bandwidth to the client; the source’s
VMD client sends pages in round-robin order to the set of
VMD servers which last reported positive excess memory and
reception bandwidth.

B. Migration Manager

We modify a publicly available post-copy implementation
from the Yabusame project [15] to implement the Migration
Managers. To recall, the Migration Manager at the source uses

a control TCP connection with the destination to communi-
cate control information about each page which includes the
pseudo-physical address of the page in VM’s memory and the
page’s location (block offset) in the VMD. During the scatter
phase, demand-paging requests from the destination arrive
at the source over the control TCP connection. The source
prioritizes the transfer of the faulted pages by temporarily
interrupting scatter operation so that the faulted pages do not
face network queuing delays behind the pages being scattered.

The destination-side Migration Manager consists of a
UMEM device (/dev/umem), its driver in the kernel-space, and
a UMEMD process in the user-space. The UMEMD process
coordinates with the source-side Migration Manager. UMEM
device provides memory sharing between the QEMU process
and the UMEMD process. Therefore, UMEMD can directly
access the VM’s memory to copy the received VM pages.
UMEMD also opens a VMD device in read-only mode to read
VM pages. For each page written to the VMD, the source side
forwards a control message to the UMEMD, which it stores
in an offset list. This information is later used to read faulted
pages from the VMD.

When a running VM accesses a page that has not been re-
ceived from the source it generates a fault. The UMEM driver
in the kernel intercepts the fault and notifies the UMEMD
user-space process. A dedicated user-space thread, created by
the UMEMD process, handles the page faults. Upon receiving
a fault from the UMEMD driver, the thread checks the state of
the Scatter-Gather migration. If the scatter phase is in progress,
the fault is redirected towards the source over the control
connection. Otherwise the VMD offset of the faulted page
is read from the offset list created earlier, the page is read
from the VMD, and copied into the memory region shared
with the QEMU process. Once the faulted page is in place, the
UMEMD process notifies the VM through the UMEM device.
UMEMD also creates a thread to actively gather the pages
from the VMD. This thread traverses the offset list received
from the source, sequentially reads the pages from the VMD
and copies them into the VM’s memory, unless they have been
already serviced via a page-fault.

C. Rate Limiting of Gather Phase
Scatter-Gather provides the option to limit the rate at which

the gather phase reads pages from the VMD. In the Sec-
tion VI-B we demonstrate that rate-limiting the gather phase
can reduce the performance impact of migration on co-located
network-bound VMs at the destination while delivering low
VM eviction time at the source. To implement rate-limiting,
we allow users to input the rate at which a VM’s pages can
be read from the VMD. The destination Migration Manager
divides the actively read pages into batches. It keeps track of
the rate of the active reads for each batch of pages and instructs
the thread reading the pages from the VMD to sleep for the
duration needed to maintain the desired rate of reception.

VI. EVALUATION

We now experimentally demonstrate that, compared to stan-
dard pre-copy and post-copy, Scatter-Gather live migration can



reduce the VM eviction time at the source even when the
destination is resource constrained. The experimental setup
is the same as in Section III except that, for Scatter-Gather
migration, we now use one intermediate node to stage the
VM’s memory. All nodes are connected to the same switch.

The reason we use only one intermediate node in our exper-
iments is to show that Scatter-Gather can reduce eviction time
even with just one intermediate node. Our current prototype
can also run with multiple intermediate hosts. Our results,
which we omit here due to space constraints, indicate that
the eviction time and total migration time are independent of
the number of intermediate hosts. This holds as long as the
intermediate hosts are not bandwidth constrained and the sum
of their free memory is greater than the migrating VM’s size.
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Fig. 5. Comparison of Eviction Time (ET) and Total Migration Time (TMT)
for a single 5GB idle VM to a busy destination host. The destination already
hosts two 5GB VMs running TunkRank.

A. Eviction Time with Memory Bottleneck

Recall that in Section III, we showed that memory pressure
at a destination adversely affected the VM eviction time
using traditional pre-copy and post-copy approaches. Here we
show that Scatter-Gather migration can deliver consistently
low eviction time even when the memory pressure at the
destination increases. As in Figure 1, the memory pressure at
the destination is controlled by changing the destination host’s
memory size from 12GB to 16GB in 1GB steps, indicating
progressively less memory pressure. We migrate an idle 5GB
VM to a destination hosting two 5GB VMs running TunkRank
and measure the eviction time. Figure 5 shows that the eviction
time for Scatter-Gather is around 6 times shorter than for pre-
copy and post-copy. Furthermore, it remains fairly constant
(at around 49 seconds) irrespective of the memory pressure
at the destination. In contrast, eviction time for pre-copy and
post-copy steadily increases with memory pressure.

At the same time, Figure 5 shows that the total migration
time of Scatter-Gather is only slightly higher (by up to 10%)
than pre-copy and post-copy. This modest overhead is due to
two reasons. First, the memory pages are transferred over two
hops to the destination, as opposed to just one for pre-copy
and post-copy. Secondly, our implementation of layer-2 RMAP
protocol in VMD presently delivers around 750 to 800Mbps
throughput on a 1Gbps Ethernet when the intermediate nodes
simultaneously handle reads and writes, whereas direct TCP

connection between source and destination can achieve close
to 900Mbps throughput. The second factor is merely an
implementation artifact and we plan to resolve it soon. Note
that, even with a lower transmission throughput, Scatter-Gather
can still deliver a low VM eviction time; higher throughput
will only help reduce it further.
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Fig. 6. Memcached request latency. The destination runs memcached servers
in two 5GB VMs while an idle 5GB VM is migrated from the source.

B. Bandwidth Pressure at the Destination

We now consider the impact of bandwidth pressure at the
destination. Our focus here is not just VM eviction time
by itself, but the tradeoff between the VM eviction time
and the performance of network-bound VMs running at the
destination. It is well known [5] that during live VM migration,
performance of other network-bound applications at the source
and destination can suffer because of bandwidth contention
with VM migration traffic. Here we consider the performance
of co-located applications only at the destination; we assume
that the source can dedicate its entire transmission bandwidth
to evict the VM quickly.

To avoid performance impact on other network-bound ap-
plications, a commonly prescribed solution is to rate-limit
(i.e. limit the bandwidth used by) the VM migration. While
this does improve the network bandwidth available to co-
located applications, it also has the unfortunate side-effect
of prolonging the VM’s eviction. We show that, when using
Scatter-Gather, this trade-off between eviction time at the
source and the application performance at the destination is
unnecessary, i.e. we can lower VM eviction time at the source
and simultaneously rate-limit the gather phase to maintain
application performance at the destination.

We run two VMs at the destination, each running a mem-
cached server. Each VM caches a 3GB Twitter dataset in its
memory and responds to query and update requests from an
external client. We simultaneously migrate a 5GB idle VM
from the source to the destination. The quality of service (QoS)
guarantee for the memcached benchmark in CloudSuite [12] is
specified as 95% of the requests being executed within 10ms.
During migration, the incoming migration traffic competes
with the memcached request-response traffic for the link
bandwidth. Figure 6 shows that, without any rate limiting for
the migration, all of the memcached requests sent during the



Eviction Time (Seconds)
Pre-copy Post-copy Scatter-Gather

Rate Limit (256 Mbps) 160.8 164.3 49.8
No Rate Limit 98.6 106.3 49.5

TABLE I
EVICTION TIME COMPARISON WHEN THE MIGRATING 5GB IDLE VM

WITH AND WITHOUT RATE LIMITING.

migration take more than 10ms to complete. When we rate-
limit the migration at 256Mbps, memcached performance im-
proves with the QoS specifications for all migration schemes.
However, Table I shows that, for pre-copy and post-copy, rate
limiting the VM migration increases the VM eviction time
by almost 1.5 times or more. In contrast, rate-limiting the
gather phase of Scatter-Gather does not significantly increase
the eviction time.

This experiment considered a bandwidth constrained des-
tination. If on the other hand, the source is bandwidth
constrained then the eviction time is lower-bounded by the
bandwidth that the source can dedicate to evict the VM.
Scatter-Gather is primarily useful when the destination is more
resource constrained and slower than the source.

C. Network Overhead

In our current implementation, lower eviction time of
Scatter-Gather comes with a tradeoff, namely a higher network
overhead. In this section we quantify this overhead and its
implications. Table II shows the amount of VM migration
traffic when an idle or a busy 5GB VM is migrated. All busy
VMs run TunkRank while the migration is in progress. Note
that since post-copy transfers each page only once over the
network it has lowest network overhead with an idle or a busy
VM among the three VM migration techniques. With pre-copy,
the network overhead for a busy VM increases three fold as
compared to its network overhead with an idle VM. Since
TunkRank is a write-intensive application it continuously
dirties VM pages during its migration. Since pre-copy re-
transmits dirtied pages, its network overhead increases. In
Scatter-Gather, each page traverses the network twice: once
during the scatter phase and again during either the gather
or demand-paging phase. For migrating an idle VM, Scatter-
Gather has the highest network overhead as a result. However,
for migrating a busy VM, pre-copy has the highest network
overhead since dirtied pages are retransmitted multiple times.

For this paper, we did not use any content-based optimiza-
tions in Scatter-Gather, such as compression or deduplication.
Prior work [9], [11], [23], [18] has shown that deduplication
can significantly reduce the network overhead of VM mi-
gration. We expect Scatter-Gather VM migration to benefit
the most from redundancy elimination by network optimizers
because the same (unmodified) pages are transferred twice and
can be easily cached by middleboxes in the network.

VII. RELATED WORK

To our best knowledge, Scatter-Gather live migration is the
first approach that aims to reduce VM eviction time when the

Network Overhead (GB)
Pre-copy Post-copy Scatter-Gather

Idle VM 5.01 5.00 10.03
Busy VM 15.48 5.00 10.24

TABLE II
AMOUNT OF DATA TRANSFERRED FOR THE MIGRATION OF A SINGLE 5GB

IDLE OR A BUSY VM. BUSY VM RUNS TUNKRANK.

destination is resource constrained. Numerous live VM mi-
gration approaches exist in literature; here we review the ones
related to lowering the total migration time, checkpoint/restart,
and applications of post-copy.

Lowering Total Migration Time: Traditional post-
copy [13], [15] VM migration provides a lower total migration
time and network traffic overhead for write-intensive applica-
tions compared to traditional pre-copy [4], [22]. Optimizations
such as ballooning [28], [13], dropping the guest cache [17],
deduplication [11], [9], [8], [18], [23], [29], compression [16],
[11], and dynamic VM synthesis [24], can lower the amount
of migration traffic and consequently the total migration time.
These optimizations are orthogonal to our contributions. We
are presently implementing optimizations such as cluster-wide
deduplication [9] in VMD.

Relationship to Checkpoint/Restore: All virtualization
platforms [27], [1], [19] include a checkpoint/restore func-
tionality in which one can take a snapshot of a VM’s mem-
ory and execution state and restore the VM later from the
snapshot. If eviction time were the only metric of interest,
then checkpoint/restore via the memory of intermediate nodes
would yield the lowest eviction time. Traditionally, restoration
is performed only after the checkpoint operation is complete,
resulting in a large downtime. Scatter-Gather live migration
approach can be viewed as a combination of live post-copy
migration and checkpoint/restore via intermediate nodes; the
checkpointing (scatter) phase proceeds concurrently with the
restoration (gather) phase, yielding lower downtime while
matching the eviction time of traditional checkpoint/restore.
Remus [6] provides high-availability for Xen VMs by captur-
ing high-frequency VM snapshots at a destination backup site
using a variant of Xen’s pre-copy VM migration. While the
VM can be quickly restored in the case the source fails, high-
frequency snapshots can impose significant overhead during
runtime, especially for write-intensive workloads.

Post-copy and its applications: Post-copy VM migra-
tion was first proposed in [13] for the Xen platform and
subsequently also implemented in [15] for the KVM/QEMU
platform. The primary advantage of post-copy is that it quickly
offloads the VM’s CPU execution state to another machine and
the memory follows later. This property of post-copy has been
exploited in a number of scenarios. SnowFlock [20] uses post-
copy to swiftly clone VMs and execute them simultaneously
on multiple hosts to run high performance parallel applica-
tions; these cloned VMs disappear when the computation ends.
Jettison [2] proposes partial VM migration in which only the
working set of an idle VM is migrated; this can be used to save



power by consolidating idle VMs from multiple desktops at a
central server so that the desktops can enter sleep mode. Post-
copy has also been used for performance assurance [14] by
quickly eliminating hotspots. We propose a variant of post-
copy in Scatter-Gather where pre-paging at the destination
actively fetches pages from intermediate hosts and demand-
paging fetches faulted pages from the source.

VIII. FUTURE WORK

We plan to extend this work as follows. First, we will
investigate eviction time when migrating multiple VMs such
as when deprovisioning an entire rack of machines. Secondly,
we plan to investigate ways to reduce network overhead in
Scatter-Gather by incorporating VMD-level optimizations such
as distributed deduplication and compression, which may be
particularly effective when simultaneously migrating multiple
VMs. Thirdly, we plan to investigate alternative designs of
Scatter-Gather VM migration discussed in Section IV-D. Fi-
nally, we will investigate the inclusion of the destination host
as part of the VMD layer to ensure that Scatter-Gather is never
slower than direct migration to the destination.

IX. CONCLUSIONS

Eviction time has not been considered as a metric in
previous live VM migration approaches. When the VM’s
destination host is resource constrained and slow in receiving
the VM’s state, the source host is unable to quickly re-
purpose the resources previously allocated for the VM. We
presented a new approach called Scatter-Gather live migration
with the specific objective of reducing VM eviction time.
Our approach decouples the source and the destination hosts
during migration; the source scatters the VM’s memory pages
to multiple intermediate hosts from where the destination
gathers these pages. We described a prototype implementation
of Scatter-Gather live migration in KVM/QEMU platform.
Our implementation uses a variant of post-copy in the gather
phase of migration and uses a distributed memory virtual-
ization layer to simplify the core Migration Manager. In our
evaluations, Scatter-Gather migration reduces the VM eviction
time by up to a factor of 6 while maintaining comparable
total migration time against traditional pre-copy and post-
copy for a resource-constrained destination. We expect that
Scatter-Gather migration will act as another useful tool in a
datacenter administrator’s toolbox that can be used when low
VM eviction time is important.
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