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Abstract—Live migration is widely used in cloud platforms
to transfer Virtual Machines (VMs) from one physical machine
to another. Live migration is useful for workload consolidation,
load balancing, failure management, and energy savings. Copy-
on-write (COW) page sharing allows identical pages to be shared
both within a VM and across co-located VMs to reduce their
collective memory footprint. Current live migration techniques
are not aware of such page sharing; thus they do not preserve
pre-existing page sharing when migrating VMs to a common
destination machine. Consequently, each shared page is replicated
at the destination multiple times as if they were separate pages.
This expansion of the memory footprint of VMs during migration
can lead to problems such as migration failure, increased network
traffic, and longer migration times. We propose Sharing-aware
Live Migration (SLM), which preserves pre-existing COW page
sharing within and across VMs that are migrated to a common
destination machine. The key idea is to identify guest pages that
are mapped to the same physical page at the source machine
and to map them to the same physical page at the destination.
We present SLM technique for both pre-copy and post-copy live
migration of multiple VMs and describe its implementation on
the KVM/QEMU virtualization platform. Our evaluations show
that SLM successfully preserves pre-existing COW page sharing
during migration, eliminates the risk of migration failure due
to memory expansion, and reduces total migration time and
network traffic overhead.

Index Terms—Cloud Computing, Live Migration, Operating
System, Deduplication, Copy-on-Write Page Sharing.

I. INTRODUCTION

Virtual machines (VMs) boost the resource usage efficiency
of data centers by allowing the co-location of multiple VMs
on the same physical machine while preserving their func-
tional isolation. In this paper, we focus on the intersection
of two essential techniques for managing co-located VMs:
live migration and copy-on-write (COW) page sharing. Live
migration [5], [17], [15] is a key technology in data centers that
transfers running VMs from one physical machine to another.
It is widely used for a variety of purposes, such as load bal-
ancing [2], [18], [39], meeting service level agreements [33],
energy savings [41], and seamless maintenance of physical
servers.

Co-located VMs may often need to be migrated to the
same destination machine for various reasons. For example,
co-located VMs that run different components of a multi-
tier application [19] may need to be migrated to the same
destination machine to maintain low inter-VM communication
latency [43], [25], [38], [21], [27] or meet other QoS tar-

gets [46]. Additionally, physical server availability, hardware
availability, and multi-tenancy limitations may necessitate the
migration of co-located VMs to the same destination machine.

COW page sharing (both within a VM and across co-located
VMs) is often used by the hypervisor’s memory management
system to reduce the collective memory footprint by sharing
identical pages, whenever doing so is feasible and safe. For
example, Kernel Samepage Merging (KSM) [1] is a Linux
kernel feature that identifies identical memory pages among
VMs that run the same guest OS or similar applications
and maps them to the same physical page through COW
page sharing. As KSM continuously identifies and merges
identical pages across different VMs, the memory footprint
of co-located VMs progressively decreases. Another example
of inter-VM page sharing is when a common VM template
image is used to quickly boot up multiple lightweight VMs;
the base template image is mapped COW into each VM’s
memory [42], [24], [36], [44]. As VMs execute and write to
(dirty) different pages of their memory, those pages are copied
for the respective VM, and their memory footprints diverge
over time.

Unfortunately, current live VM migration techniques are
unaware of pre-existing COW page sharing across VMs that
are being migrated to the same destination. As a result, shared
pages are transferred and replicated multiple times at the desti-
nation, as if they were separate pages, resulting in an expanded
memory footprint at the destination. This expansion can lead
to migration failures when the destination lacks sufficient
memory to accommodate the additional footprint of the VMs
that were comfortably co-located at the source. The duplication
of previously shared pages also results in longer migration
times and increased network traffic, potentially affecting the
performance of other network-bound workloads in the cluster.
Previous approaches [8], [7], [47], [20], [4], [12] either use
content hashing to detect and avoid the retransmission of
identical pages during migration, but do not detect pre-existing
shared pages, or work only for the limited case of pre-copy
migration of templated VM instances.

In this paper, we address the general problem of preserving
all pre-existing page sharings among multiple co-located VMs
as they are live migrated together to a common destination
machine. Our goal is to prevent the expansion of VMs’
memory footprint at the destination for both pre-copy and post-
copy live migration, for all types of VMs, irrespective of the



underlying page sharing mechanisms. The contributions of this
work are as follows:

1) We identify and demonstrate the problem of memory
footprint expansion caused by traditional live migration
techniques, specifically both pre-copy [5] and post-
copy [17]. This expansion occurs because these tech-
niques lack awareness of pre-existing COW page sharing
among co-located VMs, both within and across VMs.

2) We then present a Sharing-aware Live Migration (SLM),
which identifies and preserves all types of pre-existing
page sharing resulting from techniques such as KSM,
VM templating, or others. SLM adds COW-awareness
to both pre-copy and post-copy live migration.

3) We implement and evaluate SLM for both pre-copy
and post-copy migration in the KVM/QEMU [22] vir-
tualization platform using several workloads and mi-
crobenchmarks. Besides preserving all pre-existing page
sharings at the destination machine, SLM reduces the
total migration time by up to 59% and network traffic
by up to 62%.

While not the focus of this paper, we note that side-
channels [16], [26], [6], [45] might exploit memory sharing
among mutually untrusting VMs and solutions exist to mitigate
these risks [35], [23]. This paper assumes that appropriate
mitigation strategies are deployed when page sharing is used,
such as by sharing pages only among mutually trusting
VMs [35]. Further, memory being a bottleneck resource, safe
page sharing among mutually trusting VMs is important to
retain consolidation and multiplexing benefits of virtualization.
Finally, while we use the KVM/QEMU platform to demon-
strate our techniques in this paper, the core conceptual ideas
of our solution are applicable to other hypervisors as well.

In the rest of this paper, we first present the background on
pre-copy and post-copy live migration techniques and demon-
strate the problem of memory footprint expansion during live
migration. Next we present the design and implementation
SLM followed by its evaluation. The paper concludes with
a discussion of related work and summary of contributions.

II. BACKGROUND AND PROBLEM

In this section, we first provide background on pre-copy and
post-copy live migration and inter-VM memory sharing. Then
we motivate the problem of sharing-aware live migration.

A. Pre-copy and Post-copy Live Migration

Pre-copy live migration [5], [34] is the most common tech-
nique to migrate VMs from a source machine to a destination
machine. It works by first transferring the VM’s memory pages
to the destination, even as the VM continues running at the
source, and then transfers the CPU execution state at the end;
hence the name pre-copy which means to transfer memory
before CPU state. However, as the VM’s memory is being
transferred, its virtual CPUs (VCPUs) may write to previously
transferred pages, thus dirtying them again and requiring their
retransmission.

VM_nVM_2VM_1

Host

RAMKSM

(a) KSM Turned-off

VM_nVM_2VM_1

Host

RAMKSM

(b) KSM Turned-on

Fig. 1: (a) Without KSM, each virtual page has its own
physical page in RAM. (b) With KSM, duplicated pages are
merged into single virtual page, COW-mapped to single
physical page in RAM.

For the traditional pre-copy technique, the VM’s memory is
transferred over multiple rounds. The first pre-copy round is
the longest since it transfers all pages of the VM. The second
round transfers only the pages dirtied in the first round; the
third stage transfers only pages dirtied from the second round,
and so forth. When the number of remaining dirtied pages
is small enough, the migration process switches to the final
downtime stage in which all the VCPUs of the VM are paused
at the source, and the remaining dirtied pages, VCPU states,
and I/O device states are sent to the destination. Finally, the
VCPUs are resumed at the destination, and the VM starts
execution where it left off at the source.

Post-copy live migration [17] is another technique that first
transfers a VM’s VCPUs to the destination, resumes them
there, and then transfers the VM’s memory pages from the
source. The VM’s pages are transferred by two concurrent
mechanisms: (a) active-push of the pages from the source to
the destination, with preference for pages in the VM’s working
set, and (b) remote demand paging by the destination from the
source when a VM’s VCPU faults on a page that has not yet
been transferred from the source. Post-copy aims to reduce
the number of remote page faults by pushing pages before the
VM accesses them at the destination.

B. Inter-VM Memory Sharing

Many virtual pages, both within a single VM and across
multiple co-located VMs, may be mapped to a common phys-
ical page due to memory reduction optimizations implemented
by either the host OS or the hypervisor. For instance, upon a
fork operation, the host OS may map the child process’ pages
COW with its parent. Newly allocated pages may be mapped
to a common zero page until they are first written to. Or the
hypervisor may use deduplication techniques to perform COW
sharing of identical pages across VMs.

Kernel Samepage Merging (KSM) [10], [37] is a technique
which performs memory deduplication among co-located VMs
to fit more VMs into physical memory. Many duplicated pages
exist when the same guest OS and applications run in different
co-located VMs. Without KSM, as shown in Figure 1(a),
multiple identical virtual pages of VMs are mapped to their
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Fig. 2: Memory footprint of VMs expands at destination after
both pre-copy and post-copy live migration, because pages
shared among VMs at the source are replicated for each VM
at the destination.

own physical pages resulting in increased memory usage.
In contrast, KSM regularly scans the memory of all VMs,
identifies identical pages, and replaces them with a single
COW-shared page, as shown in Figure 1(b). In addition, COW
page sharing between VMs can also arise if they are started
from a common template image which is mapped COW into
each VM’s memory [42], [36], [44].

C. Problem: Lack of Sharing Awareness in Live Migration

Traditional pre-copy and post-copy live migration tech-
niques are unaware of underlying COW page sharing among
co-located VMs. Hence, they transfer each shared physical
page multiple times to the destination, storing multiple copies
of each previously shared page. Thus the memory footprint of
the migrated VMs ends up being larger at the destination than
it was at the source, also resulting in more network traffic and
longer total migration time.

To experimentally demonstrate this problem, we measured
the memory footprint of multiple concurrent 1GB VMs at both
the source and destination machines after migrating the VMs
using traditional pre-copy and post-copy techniques. KSM is
used at the source machine to deduplicate the memory of co-
located VMs before migration begins, thus establishing pre-
existing COW-shared pages across VMs. The actual memory
usage of each VM in this experiment is smaller than their
maximum 1GB permitted since the VMs are not yet using their
full allocation. Figure 2 shows that both pre-copy and post-
copy, which are unaware of existing COW-shared pages among
VMs, result in a larger memory footprint at the destination
than at the source after live migration completes.

While one can deduplicate again (say, using KSM) at the
destination machine to reestablish page sharing and reduce
the overall memory usage, this can take several minutes to
converge depending on how aggressively KSM is configured
to scan pages [37]. There is also a more severe possibility
that, when migrating multiple VMs to the same destination,
some VM migrations might fail due to a temporary lack of

memory at the destination. However, sufficient memory exists
if pre-existing page sharings from the source were faithfully
reproduced at the destination during migration. Even if the
destination has enough memory and the migration succeeds,
it will cause higher memory pressure at the destination, more
network traffic, and longer total migration time.

III. SHARING-AWARE LIVE MIGRATION (SLM)
We now present the design of a more general SLM tech-

nique, which preserves all pre-existing COW page sharings
among co-located VMs being migrated concurrently. SLM
is designed to operate effectively with both pre-copy and
post-copy algorithms. The key insight behind SLM is that
irrespective of the underlying page-sharing mechanism (such
as KSM, VM templating, fork, or others), multiple COW-
mapped guest pages will map to the same page in the physical
memory. SLM examines the physical address of each guest
page being transferred, identifies COW-mapped shared pages
at the source node, and avoids transmitting them multiple times
to the destination. Instead, such shared pages at the source
node before migration are mapped to the same physical page
at the destination node.

The traditional pre-copy migration transfers the memory
pages of a VM over several rounds, where the initial round
transfers the entire memory of the VM, while the subsequent
rounds only transfer pages that the VM has dirtied (i.e.,
written to) in the previous rounds. This dirtying operation
during live migration may break pre-existing COW mappings
at the source. SLM for pre-copy is designed to detect when
such COW mappings break at the source across multiple
pre-copy rounds and to disassociate the corresponding COW-
mapped pages at the destination. On the other hand, post-copy
migration transfers each page only once and, since the VM
executes at the destination, there are no dirtied pages at the
source to retransmit.

As shown in Algorithm 1, 2 and Figure 3, SLM operates on
both the source and the destination nodes. At the source node,
SLM classifies the type of each page (Unique, Duplicate, or
Dirty) and transfers them to the destination according to their
type. At the destination, SLM receives each page’s information
and maps it accordingly into the VMs’ memory. We describe
these steps at the source and destination in more detail below.

A. Identifying Page Type at Source
As illustrated in Algorithm 1, SLM follows a two-step pro-

cess for each page transfer. In the first step, SLM determines
the page’s physical frame number (PFN) and the virtual page
number (VPN). This information is stored in a hash table for
efficient lookup during subsequent transfers. In the second
step, SLM categorizes pages into one of the three types, as
outlined in Table I, based on the presence or absence of the
PFN and VPN in the hash table.

1) Unique Page: Pages that have not been transferred yet
are considered Unique. In this scenario, the correspond-
ing PFN and VPN are not present in the hash table.



Algorithm 1 SLM: Source

Input:
• N is the total number of pages in a VM.
• page[N ] is the array of all pages.
• vpn list[N ] is the array of Virtual Page Numbers (VPN).
• pfn list[N ] is the array of Page Frame Numbers (PFN).

1: function MIGRATE(VM) ▷ Source
2: for i← 1 to N do
3: Find VPN and PFN of page[i]
4: if vpn not in vpn list then
5: Append vpn to vpn list
6: if pfn not present in pfn list then
7: Append pfn to pfn list ▷ Unique page
8: Send pfn of page[i]
9: Send page[i]

10: else ▷ Duplicate page
11: Send pfn of page[i]
12: end if
13: else ▷ Dirty page
14: Send page[i]
15: end if
16: end for
17: end function

Algorithm 2 SLM: Destination

Input:
• N is the total number of pages in a VM.
• page[N ] is the array of all pages.
• identical[N ] is the array of identifiers for pages.
• offset list[N ] is the array of mmap offsets from a

memory-backend-file.
1: function RECEIVE(VM) ▷ Destination
2: for i← 1 to N do
3: mmap offset← 0
4: Receive identifier for page[i]
5: if identical[i] = 0 then ▷ Unique page
6: Append mmap offset to offset list
7: Mmap page[i] with mmap offset
8: Receive page[i] from the network
9: Increment mmap offset

10: COW-protect page[i]
11: else if identical[i] = 1 then ▷ Duplicate page
12: Retrieve mmap offset from offset list
13: Mmap page[i] with mmap offset
14: COW-protect page[i]
15: else ▷ Dirty page
16: Receive page[i] from the network
17: end if
18: end for
19: end function

PFN VPN Page Type
✗ ✗ Unique
✓ ✗ Duplicate

✓/✗ ✓ Dirty

TABLE I: Determining page type using PFN and VPN

Thus, both the PFN and VPN are inserted into the hash
table before sending the page content.

2) Duplicate Page: Pages that have already been transferred
are considered Duplicate. In this case, the PFN is present
in the hash table, but the VPN is not. Therefore, only
the VPN is inserted into the hash table before sending
the PFN.

3) Dirty Page: Pages that require retransmission due to
being dirty in the previous pre-copy round are referred
to as Dirty pages. The PFN may or may not be present in
the hash table, but the VPN is present. In this case, only
the PFN is inserted into the hash table before sending
the page content. Since post-copy only transfers pages
once, this type of page doesn’t exist for SLM post-copy.

For Unique and Dirty pages, SLM transfers the entire page,
including the page type and its PFN at the source, as a unique
identifier. However, for Duplicate pages, SLM does not send
the page content but only the page type and the PFN.

B. Preserving COW Sharing at Destination

SLM at the destination node works as shown in Algorithm 2.
At its core, the algorithm operates in two ways depending on
whether a full page or only a source PFN is received from the
source node. If a full page is received, it is copied into the
corresponding VM’s memory, and the source PFN is recorded
for future reference. On the other hand, if only the source
PFN is received, the corresponding virtual page in the VM
is mapped to the previously received physical page with the
same source PFN.

To facilitate COW sharing at the destination, we set up
an in-memory backend-file into which each received page is
memory mapped using the mmap system call [31]. There are
two flags of importance, MAP_SHARED and MAP_PRIVATE.
The MAP_SHARED flag causes any writes to a mapped virtual
address to be written back to the backend-file. On the other
hand, MAP_PRIVATE results in COW mapping, meaning that
any writes to the mapped virtual address result in the allocation
of a new private page to the process before the write is
committed, ensuring that the write is not transmitted to the
backend-file.

For SLM pre-copy, when a Unique page is received, the en-
tire backend-file is initially configured with the MAP_SHARED
flag. The received page is then written to the backend-
file, and the mmap configuration for that page is changed
to MAP_PRIVATE to enable COW mapping for any future
duplicates of the same page. The received PFN and its
corresponding mmap offset are also recorded in a hashtable.
When a Duplicate page is received, SLM retrieves the corre-
sponding mmap offset from the hashtable using the received
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Fig. 3: SLM classifies pages of VMs at the source as Unique,
Duplicate, or Dirty. Duplicate pages are not re-transmitted; in-
stead, the destination COW maps them into the same physical
page of the memory-backend-file located within RAM.

PFN and maps the virtual address to the backend-file using
the MAP_PRIVATE flag. If a Dirty page is received, SLM
skips any mmap operations and copies the entire page content
directly from the network into the VM’s address space.

In SLM post-copy, the migration thread is tasked with
copying page content from the network socket, whether re-
ceived through active-pushing or demand-paging. This al-
gorithm operates in three stages: (1) For a Unique page
type, the migration thread directly copies the temporary page
to the backend-file and records the received PFN and its
corresponding mmap offset in the hash table. For Duplicate
page types, the migration thread retrieves the mmap offset
from the hash table using the received PFN. (2) The migration
thread maps the virtual address to the backend-file using the
mmap system call and configures the page as MAP_PRIVATE.
(3) Finally, if a VCPU accessing this page was suspended
due to a page fault, the migration thread wakes it up. At the
destination, if the VMs introduce any new duplicated pages in
the future, KSM continues to deduplicate them.

C. Retrieval and Tracking of PFN

All virtual pages mapped to a shared physical page must
have the same PFN, irrespective of which sharing mechanism
generates such mapping. QEMU is a user-level management
process whose address space has specific regions reserved for
guest memory [22]. To get the guest’s physical address of a
page (VPN), we could directly access the addresses that are
part of the reserved region.

The Linux kernel exposes page table information to
userspace using /proc/pid/pagemap [40]. With this file,
a userspace process can find the PFN for a specific VPN. Each
entry in the pagemap contains 64-bit information indexed by
the VPN, with the first 56 bits indicating the PFN. SLM takes

advantage of the pagemap in the pseudo file system to retrieve
accurate PFNs for each VPN, enabling the determination of the
page type. SLM uses hashtable at the source for page type and
at destination for PFN → mmap offset mappings. A new
mmap offset entry is inserted into the table using PFN as a key
every time a Unique page arrives since they are guaranteed to
have new page content. Whenever a Duplicate page arrives,
SLM looks up the hashtable to retrieve the corresponding
mmap offset using its PFN as the key and maps the VPN
to the respective mmap offset with COW protection. Finally,
SLM skips the lookup during the arrival of Dirty pages.

D. Synchronization Across Multiple VMs
One synchronization challenge we encountered relates to the

order of arrival of Unique and Duplicate page information. In
an ideal scenario, for a given PFN, a Unique page (comprising
both its page content and PFN) should arrive at the destination
before any Duplicate page (containing only the PFN). But, dur-
ing the migration of multiple VMs, there are instances where
the PFN for a Duplicate page arrives for a VM (e.g., VMx)
before the Unique page content for the corresponding PFN
arrives for another VM (e.g., VMy). However, the Duplicate
page cannot be COW-mapped until the Unique page is mapped
and its content is written into the backend-file.

For SLM post-copy, when a Duplicate page information
arrives before its Unique page, QEMU for VMx busy waits,
anticipating the arrival of the Unique page with the expectation
that the waiting time will be short. When the Unique page with
page content for VMy arrives, QEMU for VMx proceeds to
COW map the Duplicate page.

For SLM pre-copy, VMy’s page content may change in
subsequent pre-copy rounds. We update all pending Duplicate
pages in VMx that depend on VMy at the end of each pre-
copy round through busy waiting to prevent stale mapping
entries. Busy waiting at the end of the last pre-copy round,
just before downtime, can extend VM downtime. To mitigate
this latency, SLM includes an additional live pre-copy round
without busy waiting before the downtime phase. This issue
doesn’t arise with SLM post-copy since pages are sent only
once in post-copy.

IV. EVALUATION

We now evaluate the performance of SLM against tradi-
tional pre-copy and post-copy live migration methods. Our
experimental setup consists of three machines, each equipped
with two Intel Xeon E5-2620 v2 processors and 128GB of
DRAM, running Ubuntu. We implemented SLM versions of
pre-copy and post-copy in the KVM/QEMU [22] virtualiza-
tion platform on Linux. We modified QEMU’s default pre-
copy and post-copy algorithms with no changes to the guest
operating system in the VMs. We used VMs of varying sizes,
ranging from 1GB to 32GB, as needed. Each experiment was
repeated at least five times to calculate average values. Our
key performance metrics for evaluation are as follows:

• Memory Usage: The collective memory footprint of the
VMs at the source (before migration) and destination
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Fig. 4: Comparison of memory footprint at source vs. destination when multiple VMs are migrated concurrently using generic
vs. SLM (a) pre-copy and (b) post-copy. We observe a significant increase in memory footprint for generic pre-copy/post-copy,
but no significant increase for SLM pre-copy/post-copy.

(after migration). This is measured using the free com-
mand and includes the memory used by both the QEMU
processes and the VMs. Recording the use column value
from the free command before and after spawning a
process gives the memory usage of that process.

• Total Migration Time (TMT): The total migration time
(TMT) refers to the time from the start to the end of the
entire migration process. For single VM migration, in
pre-copy, TMT is measured from the start of migration
on the source machine to when the VM resumes on the
destination machine. In post-copy, it is measured from
the initiation of migration on the source to the release
of the VM’s resources at the source after all pages have
been transferred. For multiple VM migration, in pre-copy,
TMT is calculated from the beginning of the first VM’s
migration on the source to the resumption of the last VM
on the destination. In post-copy, it is calculated from the
start of the first VM’s migration to the release of the last
VM’s resources at the source.

• Downtime: Downtime refers to the period during which a
VM’s execution is fully suspended during live migration.
In pre-copy, downtime is used to transfer the VM’s
remaining Dirty pages, I/O device states, and VCPU
states to the destination. In post-copy, the processor state
and the essential execution state necessary to start the
VM on the destination are transferred during downtime.

• Network Traffic Reduction: The reduction in the total
number of pages transferred during live migration by
eliminating the transfer of COW-shared pages.

• Application performance degradation: The extent to
which live migration slows down the performance of an
application running inside VMs during migration.

We demonstrate that migration of VMs using SLM main-
tains memory footprint of VMs and application performance
during migration, besides reducing TMT and network traffic.

In order to accurately measure TMT and downtime in
QEMU, we employ a more precise method instead of solely
relying on the source QEMU’s measurement (which we found
to be inaccurate). Specifically, we send UDP packets to a third,
separate measurement node, at the start of migration and at
the end of migration. For downtime measurement and pre-
copy TMT measurement, the start message is sent from source
node and the end message is sent from the destination node,
whereas for post-copy TMT measurement, both messages are
sent from the source node. The measurement node observes the
arrival times of these packets using the tcpdump tool, and the
difference in these arrival times represents TMT or downtime.
This method provides more accurate timings, as the dedicated
measurement node has a better view of the end-to-end live
migration timeline than the source node alone.

Throughout the evaluation, we use the term generic to refer
to the traditional versions of pre-copy and post-copy. In our
experiments with KSM, we initiate live migration only after
allowing the KSM daemon [10] to run for a sufficient period
of time, ensuring that total memory usage has stabilized. This
stabilization is confirmed by monitoring the output of the
free command in the host system. Doing this ensures that
our results capture all COW-shared pages among VMs.

A. Memory Footprint of VMs After Migration

Figures 4(a) and (b) compare the memory footprint at source
vs. destination when multiple VMs are migrated concurrently
using generic vs. SLM techniques for pre-copy and post-copy.
The X-axis indicates the number of concurrent 1GB VMs,
and the Y-axis displays their collective memory footprint.
Generic live migration, despite reducing memory usage at
the source through KSM, leads to a significantly expanded
memory footprint at the destination because the live migration
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Fig. 5: (a) Total Migration Time (b) Total Pages Transferred of multiple VMs concurrently migrated using generic vs. SLM
pre-copy/post-copy. We observe a significant increase in both TMT and TPT for generic pre-copy/post-copy vs. no significant
increase for SLM pre-copy/post-copy.

mechanism is unaware of COW-shared pages among VMs
at the source. In contrast, SLM preserves any pre-existing
COW page mappings at the destination for both pre-copy
and post-copy, resulting in no significant memory expansion
at the destination. For SLM, slight differences in memory
footprint between source and destination are due to differences
in memory usage of the QEMU process associated with VM.

B. TMT, Downtime, and Network Traffic Reduction

In this section, we evaluate the performance of concurrently
migrating multiple idle VMs between two hosts in terms of
TMT, downtime, and network traffic reduction. We increase
the number of VMs keeping the memory size of each VM
constant at 1GB.

TMT is compared between generic and SLM versions of
pre-copy and post-copy in Figure 5 (a). The X-axis is the
number of concurrent 1GB VMs being migrated, and the Y-
axis shows the TMT in milliseconds. The results show up to
59% and 57% reduction in TMT for SLM pre-copy and post-
copy, respectively, compared to their generic coureduction in
is due to SLM eliminating the retransmission ofnterparts. This
reduction in is due to SLM eliminating the retransmission of
COW-shared pages from source to destination. Figure 5 (b)
compares the total number of pages transferred during generic
and SLM pre-copy and post-copy. The experiments show a
reduction of up to 60% and 62% in total pages transferred for
SLM pre-copy and post-copy, respectively.

We compare downtime of 8 idle 1GB VMs during their
concurrent migration using generic and SLM versions of
pre-copy and post-copy. The maximum number of pages
transferred during downtime is capped at 512 (2MB). The
results indicate that VMs experience a comparable average
downtime of around 93ms for generic pre-copy and 96ms for
SLM pre-copy. Generic and SLM post-copy transfer minimal
processor states and non-pageable memory, causing downtime

of around 290ms and 300ms respectively. The higher down-
time of post-copy for both generic and SLM versions may be
attributed to various factors including VCPU thread invocation
and demand-paging, leading to more remote page faults at
resumption time. Application-observed downtimes for non-idle
VMs (discussed later) tend to be higher than these numbers
for idle VMs because of network state recovery.

C. Network Bandwidth Using iPerf
VM migration is a network-intensive procedure that can lead

to network contention between the migration process and the
applications running inside the VM. To measure the available
bandwidth for the VM’s applications during migration, we
use iPerf [11], a network-intensive application benchmark. An
iPerf server is set up on a third machine (i.e., neither the
source nor the destination) within the same network, while the
iPerf client is run inside the VM being migrated. The client
then sends data to the server during migration through a TCP
connection. All these machines are connected using a Gigabit
Ethernet switch and the link is shared between the host and
VM.

Figures 6 (a) and (b) show network bandwidth measure-
ments during live migration using pre-copy and post-copy
techniques. At the beginning of the migration, both pre-copy
techniques experienced a drop in network bandwidth from
940 Mbps to approximately 650 Mbps. However, the decline
was more significant for both post-copy versions when the
bandwidth dropped close to zero due to downtime. The sudden
drop to 670 Mbps in both pre-copy versions is attributed to
network contention between the migration thread and the iPerf
client running inside the VM. Meanwhile, the fluctuations are
a result of QEMU’s optimization for zero pages, where only
8 bytes are sent to indicate a zero page instead of the entire
page, freeing up bandwidth for iPerf traffic. In contrast, in both
versions of post-copy, the fluctuations are due to page faults
caused by the post-copy thread resulting in the retrieval of
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Fig. 6: iPerf bandwidth for Generic and SLM pre-copy/post-copy.

pages from the source via demand-paging and active-pushing
of pages from the source to avoid network faults.

SLM pre-copy migration was completed in 14.8s, whereas
generic took a longer time, approximately 19.1s. This reduc-
tion in TMT for SLM pre-copy is due to a reduced number
of pages that needed to be transferred, a consequence of elim-
inating redundant transfers of COW-shared pages. However,
the active-pushing nature of both generic and SLM post-copy
techniques, in tandem with demand-paging, aided in the faster
recovery of network bandwidth for both post-copy methods.
SLM post-copy required approximately 2s, whereas generic
took around 3.5s to complete their migration process. They
reached full bandwidth faster without significant fluctuations
when compared to their pre-copy counterparts. While SLM
pre-copy experienced a downtime of approximately 182ms,
generic pre-copy exhibited a comparatively lower downtime
of around 106ms. This overhead is due to the busy waiting
synchronization, as detailed in section III.D. Although both
SLM and generic versions of post-copy exhibit a similar
downtime of around 500ms due to network state recovery,
this duration becomes significant when compared to their
pre-copy counterparts. Our SLM technique for both pre-copy
and post-copy doesn’t introduce any significant overhead in
terms of application performance; in fact, it reduces TMT by
eliminating the redundant transfer of shared pages.

D. Redis Cluster Benchmark

Redis is a real-world in-memory key–value database. Redis
cluster is a way to run a Redis server by evenly distributing
data across multiple nodes. We set up all three Redis cluster
nodes as one Redis cluster server. Each VM is configured with
4GB RAM sharing a gigabit link and running a Redis cluster
node instance. The Redis cluster server contains 5 million ran-
dom key-value data entries, which are evenly distributed across
all three nodes. We use Redis-Benchmark [28] to emulate 50
clients sending a GET command that randomly reads key-value
data from the target Redis cluster server. Our experiments used

a Redis pipeline of 16, allowing clients to send concurrent
requests without waiting for server responses [29].

To ensure a fair comparison, we synchronized the start
time of migration for Figures 7 (a) and (b). Initially, Redis
demonstrated comparable throughput with both pre-copy and
post-copy migration. However, during pre-copy migration,
Redis experienced a 40% reduction in throughput due to
network contention with migration traffic. Conversely, Redis’
throughput during post-copy migration dropped to zero and
consistently remained lower than pre-copy, primarily due to
downtime and remote page faults which resulted in fetching
pages across the network. During the downtime, with pre-copy,
there were three brief drops in throughput towards the end
of migration whereas. With post-copy, Redis experienced a
significant downtime causing a complete disconnection.

In SLM versions of both pre-copy and post-copy, the advan-
tages of COW page sharing are preserved during migration,
resulting in a reduced TMT compared to their generic coun-
terparts. SLM pre-copy took approximately 77s to complete
migration, whereas generic pre-copy required 87s with almost
the same application-level downtime of around 5s. Due to
multiple remote page faults, SLM post-copy took 58s to com-
plete migration, while generic post-copy took about 65s. While
post-copy had shorter TMT, the additional pages required by
demand paging and active-push mechanisms took significantly
longer to fetch, leading to a 30-second application-level down-
time before full throughput was restored.

V. RELATED WORK

We first discuss existing techniques for memory footprint re-
duction among co-located VMs within a single node followed
by works related to page sharing in live migration.

Page sharing within a single node: Disco [3] was one of
the first systems to propose and implement transparent page
sharing to map multiple identical virtual pages to a single
physical page. Satori [32], modifies guest OSes to identify
sharing opportunities and communicate them to the hypervisor.
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Fig. 7: Redis-cluster read throughput when migrating 3 VMs using generic and SLM (a) pre-copy and (b) post-copy. RpS
stands for Responses per Second.

KSM [1] uses a red-black tree indexed with page content to
find identical pages. Unlike Disco, it doesn’t require any mod-
ification to the guest OS and doesn’t need hash computation
of page content. Performance of KSM depends on the location
of the identical pages in the virtual address space. Since KSM
sequentially looks for the potential candidate for merging, the
further down the pages in the process address space, the less
likely they will be merged. Difference Engine [14], in addition
to standard COW full-page sharing, also supports sub-page
level sharing and compression to improve memory savings
through deduplication. Catalyst [13] offloads the identification
of identical pages for deduplication to a GPU and eliminates
sequential scanning of pages. Several techniques have been
developed to efficiently launch multiple lightweight VMs from
a common template image, which is COW-mapped into each
VM’s memory [24], [9], [30], [44], [36].

Live Migration with Page Sharing: Traditional pre-copy
and post-copy [5], [17] are unaware of preexisting COW page
sharings at the source node. Because of this limitation, they
send identical pages multiple times as if they are different,
causing bloated memory footprint at the destination besides
higher TMT and network traffic. Several prior techniques [8],
[7], [47] have used content hashing to find identical and similar
memory pages across multiple VMs to reduce/eliminate their
transfer during live migration. While hashing-based techniques
may be useful to identify identical pages that are not COW-
shared, they do not preserve pre-existing COW page sharing
among co-located VMs when pages are transferred to a com-
mon destination. Work in [12] addresses pre-copy migration of
templated VM instances with page sharing. However it does
not work for non-templated VMs, does not work with post-
copy migration, and does not address pages shared via other
mechanisms (such as COW mappings using KSM, process
fork, and mmap). In contrast, SLM addresses all types of page
sharing, works with both templated and non-templated VMs,
and works with both pre-copy and post-copy.

6. CONCLUSION

In this paper, we addressed the problem that traditional live
VM migration techniques do not preserve COW page sharing
among co-located VMs. The resulting expanded memory foot-
print at the destination can lead to failed migrations, longer
migration times, and increased network traffic. We presented
the design, implementation, and evaluation of Sharing-aware
Live Migration (SLM) to address this problem for both pre-
copy and post-copy. SLM preserves all pre-existing page
sharings among VMs at the destination machine irrespective
of the underlying sharing mechanism. Our evaluation of SLM
on the KVM/QEMU platform shows that SLM not only
prevents memory footprint expansion but also significantly
reduces the migration time by up to 59% and the amount of
data transferred by up to 62% with no significant impact on
application performance.
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