
Real-Time Disk S
heduling Using Deadline Sensitive SCAN

Kartik Gopalan

Computer S
ien
e Department

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

kartik�
s.sunysb.edu

Abstra
t

This report des
ribes the design and implementation of Deadline Sensitive SCAN (DSSCAN)

algorithm for s
heduling of real-time disk I/O requests. DSSCAN is a simple, yet powerful,

hybrid of traditional EDF and SCAN algorithms. The main feature of DSSCAN is that, whenever

possible, it
losely imitates the behaviour of SCAN algorithm in order to in
rease the e�e
tive

throughput of disk, subje
t to the
onstraint that deadlines of real-time requests are not missed.

Unlike many other algorithms, DSSCAN does not have the notion of a �xed servi
e
y
le. This

provides DSSCAN with the
exibility to s
hedule real-time requests with �ne-grained deadlines.

DSSCAN's natural framework supports s
heduling of a mix of periodi
 real-time, aperiodi
 real-

time, and best-e�ort requests. A simple variant of DSSCAN
an easily support spe
ial
lass of

intera
tive requests. In addition, DSSCAN has a desirable property that the disk throughput

dynami
ally tra
ks how tight the request deadlines are - i.e. with sparse deadlines, DSSCAN

essentially follows SCAN order, and with dense deadlines, it follows EDF order.

1 Introdu
tion

Real-time appli
ations su
h as real-time databases, multimedia appli
ations, and real-time storage servers

require that their disk I/O requests be servi
ed within a bounded time. In general, disk I/O requests
an be

lassi�ed into three
ategories based on their timing attributes - (1) periodi
 real-time (su
h as multimedia

appli
ations), (2) aperiodi
 real-time (su
h as real-time databases) and (3) best-e�ort (any non-real-time

disk a

esses).

Traditional non-real-time disk s
hedulers use the SCAN algorithm, or one of its variants [5℄, to pro
ess

disk I/O requests. SCAN sorts requests a

ording to their tra
k positions and servi
es them in the sorted

order to redu
e unne
essary seeks. SCAN is designed to maximize the disk throughput by minimizing seek

time and does not take into a

ount any deadline
onstraints on the I/O being performed.

The simplest algorithm for deadline based s
heduling is EDF [1℄. However it does not take into a

ount

the relative positions of requested data on the disk. This results in low disk resour
e utilization even when

su

essive deadlines of requests are far apart.

A hybrid of SCAN and EDF algorithms (SCAN-EDF) is des
ribed in [6℄. Requests with earliest deadline

are served �rst. Several requests having the same deadline are served in SCAN order within a servi
e
y
le.

Intera
tive requests, requiring low response times are merged into the SCAN order of the
urrent servi
e

y
le. First drawba
k of this algorithm is that deadlines for real-time periodi
 requests are required to be

multiples of basi
 servi
e
y
le. Se
ond drawba
k of su
h a s
heme is that the servi
e
y
le needs to be large

enough if the advantages of SCAN ordering have to be realised. Large servi
e
y
le implies that only request

streams with
oarse-granularity of deadlines
an be s
heduled. Other algorithms for deadline based I/O are

des
ribed in [7, 8, 9℄. All of them use EDF s
hedule as the basi
 s
heme and reorder requests so as to redu
e

seek and rotational laten
y overhead.

1

To a
hieve a performan
e level as
lose to the SCAN algorithm as possible while meeting all disk requests'

deadlines, we propose a Deadline Sensitive SCAN Algorithm (DS-SCAN). The main features of DSSCAN

are as follows

� It attempts to s
hedule disk I/O requests in essentially SCAN order without
ompromising the deadlines

of real-time requests.

� It does not have the notion of a �xed servi
e
y
le. This provides DSSCAN with the
exibility to

s
hedule real-time request streams with �ne-grained deadlines.

� It's natural framework supports s
heduling of a mix of periodi
 real-time, aperiodi
 real-time, and

best-e�ort requests.

� With DSSCAN, the disk throughput dynami
ally tra
ks how tight the request deadlines are - i.e. with

sparse deadlines, DSSCAN essentially follows SCAN order, and with dense deadlines, it follows EDF

order.

A simple variant of DSSCAN
an easily support spe
ial
lass of intera
tive requests. Intera
tive requests

are those whi
h require low response times, but have no spe
i�
 deadlines asso
iated with them. This makes

intera
tive requests di�erent from both real-time and best-e�ort requests.

The rest of the paper is organized as follows. Se
tion 2 explains the DSSCAN algorithm and presents

its variant for handling intera
tive requests. Se
tion 3 des
ribes the implementation of DSSCAN in the

Integrated Resour
e S
heduling (IRS) system developed at SUNY, Stony Brook and se
tion 4 presents the

performan
e of DSSCAN algorithm.

2 The DSSCAN Algorithm

DSSCAN
lassi�es requests into two
lasses - real-time and best-e�ort Real-time requests have a
ompletion

deadline asso
iated with them. They
ould be either from periodi
 of aperiodi
 streams. Based on
ompletion

deadline and the size of the I/O request, a start-deadline
an be
omputed. Start-deadline represents the

latest time the real-time request has to be s
heduled if it is to meet its
ompletion deadline, assuming

worst-
ase servi
e time. Best-e�ort requests have no deadlines asso
iated with them.

In the following subse
tions, we des
ribe the the DSSCAN s
heduler and start-deadline
al
ulation al-

gorithm in detail. Following that, we present a brief des
ription of a DSSCAN variant for supporting the

spe
ial
lass of intera
tive requests.

2.1 S
heduler

DSSCAN s
hedules disk I/O requests by maintaining two request queues - one ordered by start-deadlines

and the other by SCAN order (i.e., tra
k positions), as shown in Figure ??. Ea
h real-time request is queued

in both start-deadline queue and SCAN queue. Best-e�ort requests are queued only in SCAN queue.

The DS-SCAN s
heduler servi
es the next request in the SCAN queue if this would not
ause the request

with the earliest start-deadline to miss its deadline. Otherwise, the s
heduler servi
es the disk request with

the earliest start-deadline and then re-arranges the SCAN queue a

ordingly. Spe
i�
ally, given the two

request queues, DSSCAN uses the following rules to make a s
heduling de
ision:

� Pi
k a request from the start-deadline queue a

ording to the Earliest Deadline First (EDF) poli
y.

� Pi
k the �rst request in SCAN queue.

� If the two requests thus sele
ted are di�erent, s
hedule the request pi
ked from the SCAN queue if

its exe
ution will not
ause the request pi
ked from the start-deadline queue to miss its deadline.

Otherwise s
hedule the request pi
ked from the start-deadline queue.

� Delete the
hosen request from all queues it resides in, and rearrange the SCAN queue (if ne
essary)

to begin from the lo
ation of
hosen request.

2

Current = ED

N

disk

;

for (i = N

disk

; i � 1; i� �) f

SD

i

= min(Current;ED

i

)�X

i

;

Current = SD

i

;

g

Figure 1: The start deadline
al
ulation algorithm
omputes the latest time a disk request should be started

to meet its
ompletion deadline, assuming the request's allo
ated delay budget is the worst-
ase servi
e time.

The last step is ne
essary for the following reason. Consider the situation when the request
hosen to be

s
heduled the was not at the head of SCAN queue, i.e., a request r

d

at the head of deadline ordered queue

was
hosen. On
e r

d

is servi
ed, the s
heduler would like to attempt SCAN order s
heduling from the disk

head position where r

d

was servi
ed. This makes it ne
essary to re-arrange the SCAN queue to begin from

the lo
ation where r

d

was servi
ed. This rearrangement
an be performed in
onstant time if queues are

maintained as doubly linked lists.

This s
heduling algorithm has the desirable property that the system throughput tra
ks dynami
ally how

tight the deadlines of real-time disk requests are. When there is mu
h latitude for meeting disk requests'

deadlines, DS-SCAN s
hedules disk requests mostly a

ording to the s
an order, and the overall throughput

in
reases. On the other hand, when the resour
e requirements of real-time disk requests are
lose to the full

system
apa
ity, DS-SCAN follows mostly the deadline order, and the overall throughput goes down.

2.2 Cal
ulating Start-Deadlines

Ea
h real-time request is originally spe
i�ed with a delay budget and a
ompletion deadline. Assume the

requests are sorted a

ording to their
ompletion deadlines in the as
ending order, and their delay budgets

and
ompletion deadlines are X

i

's and ED

i

's, i = 1; N

disk

. The algorithm shown in Figure 1 is used to

al
ulate the start deadline of ea
h request. It starts with the disk request with the largest
ompletion

deadline.

SD

i

is the start deadline of the i-th disk request, whi
h represents the latest time at whi
h the i-th disk

request should be started, assuming the request's delay budget is its worst-
ase servi
e time. Whenever a

new disk request is inserted into the start deadline queue, the start deadlines all the disk requests whose

ompletion deadline is smaller than the new request's
ompletion deadline need to be re-
al
ulated a

ording

to the algorithm in Figure 1, starting with the new disk request, rather than with the request with the largest

ompletion deadline. Similarly, when an existing disk request is servi
ed, the start deadlines all the disk

requests whose
ompletion deadline is smaller than the servi
ed request need to be re-
al
ulated. Using

the start deadlines instead of the
ompletion deadlines signi�
antly simpli�es eÆ
ien
y-
ons
ious real-time

disk s
heduling su
h as DS-SCAN, be
ause the start deadline of the disk request su

in
tly summarizes the

total resour
e usage of all disk requests. That is, at any instant, if the start deadline of the �rst request in

the queue
an be satis�ed, then the start deadline of all the subsequent requests in the queue
an also be

satis�ed. As a result, DS-SCAN only needs to
he
k the start deadline of the head of the deadline queue.

2.3 Supporting Intera
tive Requests

As de�ned earlier, intera
tive I/O requests are those whi
h require low response times, for instan
e, I/O

request generated by
hange in video sequen
e, or responses to mouse
li
k events in window-based appli
a-

tions. The utility of su
h requests
an be maximized by serving them qui
kly, but unlike real-time requests,

there is no deadline asso
iated with these requests. DSSCAN algorithm
an be modi�ed in the following

manner to a

omodate the
lass of intera
tive requests.

In addition to the two queues already des
ribed in se
tion 2.1, DSSCAN maintains a third queue for

intera
tive requests in First Come First Served (FCFS) order. Requests marked as intera
tive are queued

only in the intera
tive queue and in no other queue. Steps for making the s
heduling de
ision are modi�ed

as follows:

� Pi
k a request from the start-deadline queue a

ording to the Earliest Deadline First (EDF) poli
y.

3

Kernel Space

User Space

Real-time application

User Level IRS Library

System Calls Interface for IRS

Scheduler
Disk

Scheduler
CPU

Scheduler
Network

Resource
Usage MonitorScheduler

Global

Admission Controller
Real-time

File-system

Operations

Figure 2: The software ar
hite
ture of the DSSCAN s
heduler

� If the intera
tive queue is not empty

{ Pi
k �rst request from intera
tive queue.

{ If exe
ution of the sele
ted intera
tive request will not
ause the request from start-deadline

queue to miss its deadline, s
hedule the intera
tive request. Otherwise, s
hedule the request from

start-deadline queue.

� Else, intera
tive queue is empty, hen
e pi
k the �rst request in SCAN queue.

{ If the two requests thus sele
ted are di�erent, s
hedule the request pi
ked from the SCAN queue if

its exe
ution will not
ause the request pi
ked from the start-deadline queue to miss its deadline.

Otherwise s
hedule the request pi
ked from the start-deadline queue.

� Delete the
hosen request from all queues it resides in, and rearrange the SCAN queue (if ne
essary)

to begin from the lo
ation of
hosen request.

3 Implementation

DS-SCAN algorithm has been implemented as part of the IDE disk driver under LINUX operating system.

The prototype runs on Intel Pentium-based ma
hines running LINUX operating system. Figure 2 shows the

software ar
hite
ture of disk s
heduler. A one-time admission
ontroller manages the resour
e reservations

and a usage monitor
ontinuously keeps tra
k of the resour
e
onsumption of individual tasks.

A single real-time read/write task may involve requests for I/O on multiple blo
ks of data on disk. In

traditional OS su
h as LINUX, a pro
ess that issues multiple syn
hronous disk a

esses in su

ession must

go to sleep and get woken up on
e for every su
h a

ess, thus in
urring signi�
ant
ontext swit
hing and

pro
ess s
heduling overheads. Hen
e \blo
king on one I/O event at a time" approa
h is inappropriate in

real-time
ontexts. As an optimization, we modify the �le-system read/write routines to simultaneously

dispat
hing all requests asso
iated with single read/write request before blo
king the pro
ess. However, this

optimization is not stri
tly ne
essary for
orre
t funtioning of DSSCAN algorithm itself.

4

0.0 50.0 100.0 150.0 200.0

Inter Request Arrival Time (simulated time units)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

R
es

p
o

n
se

 T
im

e
(s

im
u

la
te

d
 t

im
e

u
n

it
s)

DS−SCAN

EDF

SCAN

Figure 3: Comparison of request servi
e times (for servi
ing 250 I/O requests from 5 periodi
 streams) using

DS-SCAN, SCAN and EDF disk s
heduling poli
ies with varying inter request arrival times. All times are

in units of simulated time, where 1 unit of simulated time is equivalent to the time for transferring one blo
k

of data from disk.

4 Performan
e

In this se
tion we present the performan
e analysis of the DS-SCAN algorithm for s
heduling real-time

disk I/O requests. Apart from a working implementation of the algorithm on Linux, we also developed a

simulation to
ompare the e�e
tive throughput of the three s
heduling s
hemes, namely SCAN, EDF, and

DS-SCAN. The program simulates �ve sour
es generating real-time disk I/O requests in a periodi
 fashion

and these requests get servi
ed a

ording to the s
heduling poli
y being simulated. The rationale for having

multiple sour
es is that ea
h sour
e a

esses data from di�erent �les whi
h are lo
ated at physi
ally distant

tra
ks or blo
ks on the disk. Thus an interleaved pattern of requests from all the sour
es ex
er
ises the

movement of disk head a
ross tra
ks, thus in
uen
ing the throughput observed. We varied the inter request

arrival time at the disk s
heduler by varying the period with whi
h ea
h stream issues I/O requests and

measured the time taken for s
heduling a total of 250 requests from all the �ve sour
es taken together. The

lower the time taken, the better the throughput. In our simulation, SCAN poli
y
ompletely ignores the

deadlines asso
iated with tasks, thus a
ting as a ben
hmark for the throughput that
an be
ompared with

other s
heduling poli
ies.

Figure 3 shows the result of our simulation. When requests arrive at the s
heduler with smaller inter

request arrival times, the deadlines are
lose to ea
h other, resulting in the response time of DS-SCAN

being
loser to that of EDF poli
y. This is be
ause, with
loser deadlines, DS-SCAN has less latitude in

s
heduling requests by s
an order and essentially follows the deadline order. With in
reasing inter request

arrival times, deadlines of requests are spa
ed further apart and DS-SCAN uses this latitude to s
hedule

requests in essentially s
an order. This ability of DS-SCAN to dynami
ally adjust its behaviour depending

on amount of real-time load is the key to getting higher I/O throughput and shorter response times.

5

5 Con
lusions and Future Work

In this paper, we presented the design and implementation of a new real-time disk s
heduling algorithm,

DS-SCAN, that satis�es the deadline requirements of ea
h disk I/O request while serving the requests

by s
an order whenever possible in order to a
hieve higher disk throughput. DSSCAN's simple design

enables
exible �ne-grained deadline spe
i�
ation for periodi
 and aperiodi
 real-time requests in addition

to supporting best-e�ort requests. A simple variant of DSSCAN also supports low response times for spe
ial

lass of intera
tive requests.

While implementing DSSCAN we realized that one of the important fa
tors in ensuring e�e
tiveness of

DSSCAN is a

urate estimation of disk servi
e time. Currently, the start-deadline
al
ulation algorithm

assumes worst
ase servi
e time for ea
h real-time I/O request. The next step in this work is to in
orporate

a

urate request servi
e-time estimation into DSSCAN algorithm.

Referen
es

[1℄ C.L. Liu and J.W. Layland, \S
heduling algorithms for multiprogramming environment in a hard real-

time environment," Journal of the ACM, 20(1), 47-61, (1973).

[2℄ J.Neih and M.S.Lam, \The design, implementation and evaluation of SMART: A s
heduler for mul-

timedia appli
ations", In Pro
. ACM Symposium on Operating Systems Prin
iples, St.Malo, Fran
e,

O
t. 1997.

[3℄ Tzi-
ker Chiueh, Chitra Venkatramani, Mi
hael Verni
k, \Design and Implementation of the Stony

Brook Video Server", in Software { Pra
ti
e and Experien
e, January 1997.

[4℄ Tzi-
ker Chiueh, Kartik Gopalan, \Design and Implementation of Integrated Real-Time Resour
e

S
heduling", Te
hni
al Report TR-56, Experimental Computer Systems Labs, Deptt. of Computer

S
ien
e, SUNY at Stony Brook, May 1999.

[5℄ Brad Bar
lay, \A Survey of Disk S
heduling and Seek Optimization Te
hniques",

http://yaztromo.idire
t.
om/seekopt.html

[6℄ A.L. Narasimha Reddy and J. Wyllie, \Disk S
heduling in Multimedia I/O System". In Pro
eedings of

ACM Multimedia'93, Anaheim, CA, 225-234, August 1993.

[7℄ R.K. Abbot and H. Gra
ia-Molina, \S
heduling I/O Requests with Deadlines: A Performan
e Evalua-

tion", In Pro
eedings of RTSS, 113-124, De
ember 1990.

[8℄ M.J. Carey, R. Jauhari, and M. Linvy, \Priority in DBMS Resour
e S
heduling", In Pro
eedings of the

15th VLDB Conferen
e, 1989.

[9℄ S.Chen, J.A.Stankovi
, J.F.Kurose, and D.Towsley, \Performan
e Evaluation of Two New Disk S
hedul-

ing Algorithms for Real-Time Systems", Journal of Real-Time Systems, Vol. 3, 307-336, 1991.

6

