
Real-Time Disk Sheduling Using Deadline Sensitive SCAN

Kartik Gopalan

Computer Siene Department

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

kartik�s.sunysb.edu

Abstrat

This report desribes the design and implementation of Deadline Sensitive SCAN (DSSCAN)

algorithm for sheduling of real-time disk I/O requests. DSSCAN is a simple, yet powerful,

hybrid of traditional EDF and SCAN algorithms. The main feature of DSSCAN is that, whenever

possible, it losely imitates the behaviour of SCAN algorithm in order to inrease the e�etive

throughput of disk, subjet to the onstraint that deadlines of real-time requests are not missed.

Unlike many other algorithms, DSSCAN does not have the notion of a �xed servie yle. This

provides DSSCAN with the exibility to shedule real-time requests with �ne-grained deadlines.

DSSCAN's natural framework supports sheduling of a mix of periodi real-time, aperiodi real-

time, and best-e�ort requests. A simple variant of DSSCAN an easily support speial lass of

interative requests. In addition, DSSCAN has a desirable property that the disk throughput

dynamially traks how tight the request deadlines are - i.e. with sparse deadlines, DSSCAN

essentially follows SCAN order, and with dense deadlines, it follows EDF order.

1 Introdution

Real-time appliations suh as real-time databases, multimedia appliations, and real-time storage servers

require that their disk I/O requests be servied within a bounded time. In general, disk I/O requests an be

lassi�ed into three ategories based on their timing attributes - (1) periodi real-time (suh as multimedia

appliations), (2) aperiodi real-time (suh as real-time databases) and (3) best-e�ort (any non-real-time

disk aesses).

Traditional non-real-time disk shedulers use the SCAN algorithm, or one of its variants [5℄, to proess

disk I/O requests. SCAN sorts requests aording to their trak positions and servies them in the sorted

order to redue unneessary seeks. SCAN is designed to maximize the disk throughput by minimizing seek

time and does not take into aount any deadline onstraints on the I/O being performed.

The simplest algorithm for deadline based sheduling is EDF [1℄. However it does not take into aount

the relative positions of requested data on the disk. This results in low disk resoure utilization even when

suessive deadlines of requests are far apart.

A hybrid of SCAN and EDF algorithms (SCAN-EDF) is desribed in [6℄. Requests with earliest deadline

are served �rst. Several requests having the same deadline are served in SCAN order within a servie yle.

Interative requests, requiring low response times are merged into the SCAN order of the urrent servie

yle. First drawbak of this algorithm is that deadlines for real-time periodi requests are required to be

multiples of basi servie yle. Seond drawbak of suh a sheme is that the servie yle needs to be large

enough if the advantages of SCAN ordering have to be realised. Large servie yle implies that only request

streams with oarse-granularity of deadlines an be sheduled. Other algorithms for deadline based I/O are

desribed in [7, 8, 9℄. All of them use EDF shedule as the basi sheme and reorder requests so as to redue

seek and rotational lateny overhead.

1

To ahieve a performane level as lose to the SCAN algorithm as possible while meeting all disk requests'

deadlines, we propose a Deadline Sensitive SCAN Algorithm (DS-SCAN). The main features of DSSCAN

are as follows

� It attempts to shedule disk I/O requests in essentially SCAN order without ompromising the deadlines

of real-time requests.

� It does not have the notion of a �xed servie yle. This provides DSSCAN with the exibility to

shedule real-time request streams with �ne-grained deadlines.

� It's natural framework supports sheduling of a mix of periodi real-time, aperiodi real-time, and

best-e�ort requests.

� With DSSCAN, the disk throughput dynamially traks how tight the request deadlines are - i.e. with

sparse deadlines, DSSCAN essentially follows SCAN order, and with dense deadlines, it follows EDF

order.

A simple variant of DSSCAN an easily support speial lass of interative requests. Interative requests

are those whih require low response times, but have no spei� deadlines assoiated with them. This makes

interative requests di�erent from both real-time and best-e�ort requests.

The rest of the paper is organized as follows. Setion 2 explains the DSSCAN algorithm and presents

its variant for handling interative requests. Setion 3 desribes the implementation of DSSCAN in the

Integrated Resoure Sheduling (IRS) system developed at SUNY, Stony Brook and setion 4 presents the

performane of DSSCAN algorithm.

2 The DSSCAN Algorithm

DSSCAN lassi�es requests into two lasses - real-time and best-e�ort Real-time requests have a ompletion

deadline assoiated with them. They ould be either from periodi of aperiodi streams. Based on ompletion

deadline and the size of the I/O request, a start-deadline an be omputed. Start-deadline represents the

latest time the real-time request has to be sheduled if it is to meet its ompletion deadline, assuming

worst-ase servie time. Best-e�ort requests have no deadlines assoiated with them.

In the following subsetions, we desribe the the DSSCAN sheduler and start-deadline alulation al-

gorithm in detail. Following that, we present a brief desription of a DSSCAN variant for supporting the

speial lass of interative requests.

2.1 Sheduler

DSSCAN shedules disk I/O requests by maintaining two request queues - one ordered by start-deadlines

and the other by SCAN order (i.e., trak positions), as shown in Figure ??. Eah real-time request is queued

in both start-deadline queue and SCAN queue. Best-e�ort requests are queued only in SCAN queue.

The DS-SCAN sheduler servies the next request in the SCAN queue if this would not ause the request

with the earliest start-deadline to miss its deadline. Otherwise, the sheduler servies the disk request with

the earliest start-deadline and then re-arranges the SCAN queue aordingly. Spei�ally, given the two

request queues, DSSCAN uses the following rules to make a sheduling deision:

� Pik a request from the start-deadline queue aording to the Earliest Deadline First (EDF) poliy.

� Pik the �rst request in SCAN queue.

� If the two requests thus seleted are di�erent, shedule the request piked from the SCAN queue if

its exeution will not ause the request piked from the start-deadline queue to miss its deadline.

Otherwise shedule the request piked from the start-deadline queue.

� Delete the hosen request from all queues it resides in, and rearrange the SCAN queue (if neessary)

to begin from the loation of hosen request.

2

Current = ED

N

disk

;

for (i = N

disk

; i � 1; i� �) f

SD

i

= min(Current;ED

i

)�X

i

;

Current = SD

i

;

g

Figure 1: The start deadline alulation algorithm omputes the latest time a disk request should be started

to meet its ompletion deadline, assuming the request's alloated delay budget is the worst-ase servie time.

The last step is neessary for the following reason. Consider the situation when the request hosen to be

sheduled the was not at the head of SCAN queue, i.e., a request r

d

at the head of deadline ordered queue

was hosen. One r

d

is servied, the sheduler would like to attempt SCAN order sheduling from the disk

head position where r

d

was servied. This makes it neessary to re-arrange the SCAN queue to begin from

the loation where r

d

was servied. This rearrangement an be performed in onstant time if queues are

maintained as doubly linked lists.

This sheduling algorithm has the desirable property that the system throughput traks dynamially how

tight the deadlines of real-time disk requests are. When there is muh latitude for meeting disk requests'

deadlines, DS-SCAN shedules disk requests mostly aording to the san order, and the overall throughput

inreases. On the other hand, when the resoure requirements of real-time disk requests are lose to the full

system apaity, DS-SCAN follows mostly the deadline order, and the overall throughput goes down.

2.2 Calulating Start-Deadlines

Eah real-time request is originally spei�ed with a delay budget and a ompletion deadline. Assume the

requests are sorted aording to their ompletion deadlines in the asending order, and their delay budgets

and ompletion deadlines are X

i

's and ED

i

's, i = 1; N

disk

. The algorithm shown in Figure 1 is used to

alulate the start deadline of eah request. It starts with the disk request with the largest ompletion

deadline.

SD

i

is the start deadline of the i-th disk request, whih represents the latest time at whih the i-th disk

request should be started, assuming the request's delay budget is its worst-ase servie time. Whenever a

new disk request is inserted into the start deadline queue, the start deadlines all the disk requests whose

ompletion deadline is smaller than the new request's ompletion deadline need to be re-alulated aording

to the algorithm in Figure 1, starting with the new disk request, rather than with the request with the largest

ompletion deadline. Similarly, when an existing disk request is servied, the start deadlines all the disk

requests whose ompletion deadline is smaller than the servied request need to be re-alulated. Using

the start deadlines instead of the ompletion deadlines signi�antly simpli�es eÆieny-onsious real-time

disk sheduling suh as DS-SCAN, beause the start deadline of the disk request suintly summarizes the

total resoure usage of all disk requests. That is, at any instant, if the start deadline of the �rst request in

the queue an be satis�ed, then the start deadline of all the subsequent requests in the queue an also be

satis�ed. As a result, DS-SCAN only needs to hek the start deadline of the head of the deadline queue.

2.3 Supporting Interative Requests

As de�ned earlier, interative I/O requests are those whih require low response times, for instane, I/O

request generated by hange in video sequene, or responses to mouse lik events in window-based applia-

tions. The utility of suh requests an be maximized by serving them quikly, but unlike real-time requests,

there is no deadline assoiated with these requests. DSSCAN algorithm an be modi�ed in the following

manner to aomodate the lass of interative requests.

In addition to the two queues already desribed in setion 2.1, DSSCAN maintains a third queue for

interative requests in First Come First Served (FCFS) order. Requests marked as interative are queued

only in the interative queue and in no other queue. Steps for making the sheduling deision are modi�ed

as follows:

� Pik a request from the start-deadline queue aording to the Earliest Deadline First (EDF) poliy.

3

Kernel Space

User Space

Real-time application

User Level IRS Library

System Calls Interface for IRS

Scheduler
Disk

Scheduler
CPU

Scheduler
Network

Resource
Usage MonitorScheduler

Global

Admission Controller
Real-time

File-system

Operations

Figure 2: The software arhiteture of the DSSCAN sheduler

� If the interative queue is not empty

{ Pik �rst request from interative queue.

{ If exeution of the seleted interative request will not ause the request from start-deadline

queue to miss its deadline, shedule the interative request. Otherwise, shedule the request from

start-deadline queue.

� Else, interative queue is empty, hene pik the �rst request in SCAN queue.

{ If the two requests thus seleted are di�erent, shedule the request piked from the SCAN queue if

its exeution will not ause the request piked from the start-deadline queue to miss its deadline.

Otherwise shedule the request piked from the start-deadline queue.

� Delete the hosen request from all queues it resides in, and rearrange the SCAN queue (if neessary)

to begin from the loation of hosen request.

3 Implementation

DS-SCAN algorithm has been implemented as part of the IDE disk driver under LINUX operating system.

The prototype runs on Intel Pentium-based mahines running LINUX operating system. Figure 2 shows the

software arhiteture of disk sheduler. A one-time admission ontroller manages the resoure reservations

and a usage monitor ontinuously keeps trak of the resoure onsumption of individual tasks.

A single real-time read/write task may involve requests for I/O on multiple bloks of data on disk. In

traditional OS suh as LINUX, a proess that issues multiple synhronous disk aesses in suession must

go to sleep and get woken up one for every suh aess, thus inurring signi�ant ontext swithing and

proess sheduling overheads. Hene \bloking on one I/O event at a time" approah is inappropriate in

real-time ontexts. As an optimization, we modify the �le-system read/write routines to simultaneously

dispathing all requests assoiated with single read/write request before bloking the proess. However, this

optimization is not stritly neessary for orret funtioning of DSSCAN algorithm itself.

4

0.0 50.0 100.0 150.0 200.0

Inter Request Arrival Time (simulated time units)

0.0e+00

5.0e+04

1.0e+05

1.5e+05

R
es

p
o

n
se

 T
im

e
(s

im
u

la
te

d
 t

im
e

u
n

it
s)

DS−SCAN

EDF

SCAN

Figure 3: Comparison of request servie times (for serviing 250 I/O requests from 5 periodi streams) using

DS-SCAN, SCAN and EDF disk sheduling poliies with varying inter request arrival times. All times are

in units of simulated time, where 1 unit of simulated time is equivalent to the time for transferring one blok

of data from disk.

4 Performane

In this setion we present the performane analysis of the DS-SCAN algorithm for sheduling real-time

disk I/O requests. Apart from a working implementation of the algorithm on Linux, we also developed a

simulation to ompare the e�etive throughput of the three sheduling shemes, namely SCAN, EDF, and

DS-SCAN. The program simulates �ve soures generating real-time disk I/O requests in a periodi fashion

and these requests get servied aording to the sheduling poliy being simulated. The rationale for having

multiple soures is that eah soure aesses data from di�erent �les whih are loated at physially distant

traks or bloks on the disk. Thus an interleaved pattern of requests from all the soures exerises the

movement of disk head aross traks, thus inuening the throughput observed. We varied the inter request

arrival time at the disk sheduler by varying the period with whih eah stream issues I/O requests and

measured the time taken for sheduling a total of 250 requests from all the �ve soures taken together. The

lower the time taken, the better the throughput. In our simulation, SCAN poliy ompletely ignores the

deadlines assoiated with tasks, thus ating as a benhmark for the throughput that an be ompared with

other sheduling poliies.

Figure 3 shows the result of our simulation. When requests arrive at the sheduler with smaller inter

request arrival times, the deadlines are lose to eah other, resulting in the response time of DS-SCAN

being loser to that of EDF poliy. This is beause, with loser deadlines, DS-SCAN has less latitude in

sheduling requests by san order and essentially follows the deadline order. With inreasing inter request

arrival times, deadlines of requests are spaed further apart and DS-SCAN uses this latitude to shedule

requests in essentially san order. This ability of DS-SCAN to dynamially adjust its behaviour depending

on amount of real-time load is the key to getting higher I/O throughput and shorter response times.

5

5 Conlusions and Future Work

In this paper, we presented the design and implementation of a new real-time disk sheduling algorithm,

DS-SCAN, that satis�es the deadline requirements of eah disk I/O request while serving the requests

by san order whenever possible in order to ahieve higher disk throughput. DSSCAN's simple design

enables exible �ne-grained deadline spei�ation for periodi and aperiodi real-time requests in addition

to supporting best-e�ort requests. A simple variant of DSSCAN also supports low response times for speial

lass of interative requests.

While implementing DSSCAN we realized that one of the important fators in ensuring e�etiveness of

DSSCAN is aurate estimation of disk servie time. Currently, the start-deadline alulation algorithm

assumes worst ase servie time for eah real-time I/O request. The next step in this work is to inorporate

aurate request servie-time estimation into DSSCAN algorithm.

Referenes

[1℄ C.L. Liu and J.W. Layland, \Sheduling algorithms for multiprogramming environment in a hard real-

time environment," Journal of the ACM, 20(1), 47-61, (1973).

[2℄ J.Neih and M.S.Lam, \The design, implementation and evaluation of SMART: A sheduler for mul-

timedia appliations", In Pro. ACM Symposium on Operating Systems Priniples, St.Malo, Frane,

Ot. 1997.

[3℄ Tzi-ker Chiueh, Chitra Venkatramani, Mihael Vernik, \Design and Implementation of the Stony

Brook Video Server", in Software { Pratie and Experiene, January 1997.

[4℄ Tzi-ker Chiueh, Kartik Gopalan, \Design and Implementation of Integrated Real-Time Resoure

Sheduling", Tehnial Report TR-56, Experimental Computer Systems Labs, Deptt. of Computer

Siene, SUNY at Stony Brook, May 1999.

[5℄ Brad Barlay, \A Survey of Disk Sheduling and Seek Optimization Tehniques",

http://yaztromo.idiret.om/seekopt.html

[6℄ A.L. Narasimha Reddy and J. Wyllie, \Disk Sheduling in Multimedia I/O System". In Proeedings of

ACM Multimedia'93, Anaheim, CA, 225-234, August 1993.

[7℄ R.K. Abbot and H. Graia-Molina, \Sheduling I/O Requests with Deadlines: A Performane Evalua-

tion", In Proeedings of RTSS, 113-124, Deember 1990.

[8℄ M.J. Carey, R. Jauhari, and M. Linvy, \Priority in DBMS Resoure Sheduling", In Proeedings of the

15th VLDB Conferene, 1989.

[9℄ S.Chen, J.A.Stankovi, J.F.Kurose, and D.Towsley, \Performane Evaluation of Two New Disk Shedul-

ing Algorithms for Real-Time Systems", Journal of Real-Time Systems, Vol. 3, 307-336, 1991.

6

