
Introduction to Virtual Machines

Kartik Gopalan

From
“HSSV”, Bugnion, Neih, Tsafrir
“Virtual Machines”, Smith and Nair, Chapter 1
Also, Chapter 7 Andrew Tanenbaum’s book

• “Virtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing
computer systems resources to provide extraordinary system
flexibility and support for certain unique applications”.
—Robert. P. Goldberg, IEEE Computer, 1974

The Rise and Fall of Virtual Machines
• 1970s:

• IBM mainframes run VMs and hardware supports not just single-level,
but also nested virtualization.

• Hundreds of papers on virtualization.
• Goldberg and Popek’s seminal paper on formal requirements of

virtualization support.

• 1980s and 1990s:
• Personal computers (temporarily) obviate the need for VMs.
• x86. MIPS, Sparc processors have no hardware support for

virtualization
• UNIX, Windows, Linux don’t include virtualization support.

VMs — Back from Dead (or the Second Coming)

• 1997: DISCO paper revisits for running commodity OS on SMP machines
• 1999: VMWare releases VMWare workstation for x86 CPUs.
• Early 2000s:

• VMWare ESX server, VirtualPC, Xen, Denali, Cells.
• Still no hardware support for virtualization

• Late 2000s
• AMD-V, Intel VT-x, VT-d etc.
• Turtles paper: Nested Virtualization revisited

• 2010s:
• Multi-billion $ industry.
• All cloud platforms are virtualized.

• But wait…the cycle may be turning back.
• Bare-metal clouds
• “Say Goodbye to Virtualization for a Safer Cloud”, HotCloud 2018

Definitions

• Virtualization is the application of the layering principle through
enforced modularity, [whereby the exposed virtual resource is
identical to the underlying physical resource being virtualized.]

• A virtual machine is an abstraction of a complete compute
environment through the com- bined virtualization of the
processor, memory, and I/O components of a computer.  

• The hypervisor is a specialized piece of system software that
manages and runs virtual ma- chines.  

• The virtual machine monitor (VMM) refers to the portion of the
hypervisor that focuses on the CPU and memory virtualization.  

Forms of Virtualization

���� 7*356"-*;"5*0/ �
7JSUVBMJ[BUJPO JO *�0 TVCTZTUFNT� 7JSUVBMJ[BUJPO JT VCJRVJUPVT JO EJTLT BOE EJTL DPOUSPMMFST

XIFSF UIF SFTPVSDF CFJOH WJSUVBMJ[FE JT B CMPDL�BEESFTTFE BSSBZ PG TFDUPST� ɩF BQQSPBDI JT VTFE
CZ 3"*% DPOUSPMMFST BOE TUPSBHF BSSBZT
 XIJDI QSFTFOU UIF BCTUSBDUJPO PG NVMUJQMF 	WJSUVBM
 EJTLT
UP UIF PQFSBUJOH TZTUFNT
 XIJDI BEESFTTFT UIFN BT 	SFBM
 EJTLT� 4JNJMBSMZ
 UIF 'MBTI 5SBOTMBUJPO
-BZFS GPVOE JO DVSSFOU 44% QSPWJEFT XFBS�MFWFMJOH XJUIJO UIF *�0 TVCTZTUFN BOE FYQPTFT UIF
44% UP UIF PQFSBUJOH TZTUFNT BT UIPVHI JU XFSF B NFDIBOJDBM EJTL�

8IFUIFS EPOF JO IBSEXBSF
 JO TPGUXBSF
 PS FNCFEEFE JO TVCTZTUFNT
 WJSUVBMJ[BUJPO JT BM�
XBZT BDIJFWFE CZ VTJOH BOE DPNCJOJOH UISFF TJNQMF UFDIOJRVFT
 JMMVTUSBUFE JO 'JHVSF ���� 'JSTU

NVMUJQMFYJOH FYQPTFT B SFTPVSDF BNPOH NVMUJQMF WJSUVBM FOUJUJFT� ɩFSF BSF UXP UZQFT PG NVMUJQMFY�
JOH
 JO TQBDF BOE JO UJNF� 8JUI TQBDF NVMUJQMFYJOH
 UIF QIZTJDBM SFTPVSDF JT QBSUJUJPOFE 	JO TQBDF

JOUP WJSUVBM FOUJUJFT� 'PS FYBNQMF
 UIF PQFSBUJOH TZTUFN NVMUJQMFYFT EJĊFSFOU QBHFT PG QIZTJDBM
NFNPSZ BDSPTT EJĊFSFOU BEESFTT TQBDFT� 5P BDIJFWF UIJT HPBM
 UIF PQFSBUJOH TZTUFN NBOBHFT UIF
WJSUVBM�UP�QIZTJDBM NBQQJOHT BOE SFMJFT PO UIF BSDIJUFDUVSBM TVQQPSU QSPWJEFE CZ UIF ..6�

X

X X X X X

X X X Y

Virtualization Virtualization Virtualization

(a) Multiplexing (b) Aggregation (c) Emulation

P
h

y
si

ca
l

R
es

o
u

rc
e

A
b

st
ra

ct
io

n

'JHVSF ���� ɩSFF CBTJD JNQMFNFOUBUJPOT UFDIOJRVFT PG WJSUVBMJ[BUJPO� 9 SFQSFTFOUT CPUI UIF QIZTJDBM
SFTPVSDF BOE UIF WJSUVBMJ[FE BCTUSBDUJPO�

8JUI UJNFNVMUJQMFYJOH
 UIF TBNF QIZTJDBM SFTPVSDF JT TDIFEVMFE UFNQPSBMMZ CFUXFFO WJSUVBM
FOUJUJFT� 'PS FYBNQMF
 UIF 04 TDIFEVMFS NVMUJQMFYFT UIF $16 DPSF BOE IBSEXBSF UISFBET BNPOH
UIF TFU PG SVOOBCMF QSPDFTTFT� ɩF DPOUFYU TXJUDIJOH PQFSBUJPO TBWFT UIF QSPDFTTPS�T SFHJTUFS mMF JO
UIF NFNPSZ BTTPDJBUFE XJUI UIF PVUHPJOH QSPDFTT
 BOE UIFO SFTUPSFT UIF TUBUF PG UIF SFHJTUFS mMF
GSPN UIF NFNPSZ MPDBUJPO BTTPDJBUFE XJUI UIF JODPNJOH QSPDFTT�

4FDPOE
 BHHSFHBUJPO EPFT UIF PQQPTJUF
 JU UBLFTNVMUJQMF QIZTJDBM SFTPVSDFT BOENBLFT UIFN
BQQFBS BT B TJOHMF BCTUSBDUJPO� 'PS FYBNQMF
 B 3"*% DPOUSPMMFS BHHSFHBUFT NVMUJQMF EJTLT JOUP
B TJOHMF WPMVNF� 0ODF DPOmHVSFE
 UIF DPOUSPMMFS FOTVSFT UIBU BMM SFBE BOE XSJUF PQFSBUJPOT UP
UIF WPMVNF BSF BQQSPQSJBUFMZ SFnFDUFE POUP UIF WBSJPVT EJTLT PG UIF 3"*% HSPVQ� ɩF PQFSBUJOH
TZTUFN UIFO GPSNBUT UIF mMFTZTUFN POUP UIF WPMVNF XJUIPVU IBWJOH UP XPSSZ BCPVU UIF EFUBJMT PG

Note that the three are not mutually exclusive.
• Many-to-many virtualization
• Emulating many I/O devices on a single physical disk

One-to-many Many-to-many One-to-another

Virtual Machines
• Logical/Emulated representations of full computing system environment

• CPU + memory + I/O
• Implemented by adding layers of software to the real machine to support the

desired VM architecture.
• Uses:

• Multiple OSes on one machine, including legacy OSes
• Isolation
• Enhanced security
• Live migration of servers
• Virtual environment for testing and development
• Platform emulation
• On-the-fly optimization
• Realizing ISAs not found in physical machines

Interfaces of a computer system

User ISA : 7
System ISA : 8
Syscalls : 3
ABI : 3, 7
API : 2,7

• Process VM
• Virtualizes the ABI
• Virtualization software = Runtime

• Runs in non-privileged mode (user
space)

• Performs binary translation.
• Terminates when guest process

terminates.

• System VM
• Virtualizes the ISA
• Virtualization software = Hypervisor

• Runs in privileged mode
• Traps and emulates privileged

instructions
• Lasts as long as physical host is alive

Two Types of VMs

Process Virtual Machines
❑ Process in a multiprogramming OS

• Standard OS syscall interface + instruction set
• Multiple processes, each with its own address space and virtual machine view.

❑ Emulators
• Support one ISA on hardware designed for another ISA
• Interpreter:

• Fetches, decodes and emulates individual instructions. Slow.
• Dynamic Binary Translator:

• Blocks of source instructions converted to target instructions.
• Translated blocks cached to exploit locality.

❑ Same ISA Binary Optimizers
• Optimize code on the fly
• Same as emulators except source and target ISAs are the same.

❑ Language-based VMs
• Virtual ISA (bytecode) designed for platform independence
• Platform-dependent VM executes virtual ISA
• E.g. Sun’s JVM and Microsoft’s CLI (part of .NET)
• Both are stack-based VMs that run on register-based m/c.

Alpha ISA

Windows NT Runtime

IA-32 Windows APP

Digital FX!32 Emulator

Java Application

Java Virtual Machine

OS

ISA
User ISA

System Virtual Machines

(focus of this lecture)

Hypervisor
❑ Also called Virtual Machine

Monitor (VMM)

❑ A hypervisor is an operating system
for operating systems
• Provides a virtual execution

environment for an entire OS and
its applications

• Controls access to hardware
resources

• When guest OS executes a
privileged instruction,
Hypervisor intercepts the
instruction, checks for
correctness and emulates the
instruction.

Apps Apps Apps

Guest
OS 1

Guest
OS 2

Guest
OS 3

Hypervisor

Hardware

Type 1 Hypervisors (Classical System VMs)

❑Hypervisor executes natively on the host ISA
❑Hypervisor directly controls hardware and provides all device drivers
❑Hypervisor emulates sensitive instructions executed by the Guest OS
❑E.g. KVM and VMWare ESX Server

Type-2 Hypervisors (Hosted VMs)
❍ A host OS controls the hardware
❍ The Hypervisor runs partly in process space and partly in the host

kernel
❍ Hypervisor Relies on host OS to provide drivers
❍ E.g. VMWare Desktop Client

Para-virtualized VMs
❑Modify guest OS for better performance

❑Traditional Hypervisors provide full-virtualization
• They expose to VMs virtual hardware that is functionally identical to the underlying

physical hardware.
• Advantage : allows unmodified guest OS to execute
• Disadvantage: Sensitive instructions must be trapped and emulated by Hypervisor.
• E.g. KVM and VMWare ESX provide full virtualization

❑ Para-virtualized VM
• Sees a virtual hardware abstraction that is similar, but not identical to the real

hardware.
• Guest OS is modified to replace sensitive instructions with “hypercalls” to the

Hypervisor.
• Advantage: Results in lower performance overhead
• Disadvantage: Needs modification to the guest OS.
• E.g. Xen provides both para-virtual as well as full-virtualization

❑ Often traditional Hypervisors are partially para-virtualizated
❑ Device drivers in guest OS may be para-virtualized whereas CPU and Memory

may be fully virtualized.

Whole System VMs: Emulation
❑ Host and Guest ISA are different
❑ So emulation is required
❑ Hosted VM + emulation
❑ E.g. Virtual PC (Windows on MAC)

Co-designed VMs

❑The hypervisor is designed closely with (and possibly built
into) a specific type of hardware ISA (or native ISA).

❑ Goal: Performance improvement of existing ISA (or guest ISA)
during runtime.

❑Hypervisor performs Emulation from Guest ISA to Native ISA.

❑E.g. Transmeta Crusoe
• Native ISA based on VLIW
• Guest ISA = x86
• Goal power savings

Taxonomy

Para-virtualized VMs

Hardware Virtual Machines

Versatility

Java App

Linux IA-32

Windows IA-32

Crusoe VLIW

JVM

VMWare

Code Morphing

What can you do with system VMs?

❑ Emulation: Mix-and-match cross-platform portability
❑ Optimization: Usually done with emulation for platform-specific performance

improvement
❑ Replication: Multiple VMs on single platform
❑ Composition: form more complex flexible systems

Emulation &
Optimization

Replication Composition

Virtualizing individual resources in
System VMs

CPU Virtualization for VMs
• Each VM sees a set of “virtual CPUs”
• Hypervisors must emulate privileged instructions issued by guest OS.
• Modern ISAs provide special interfaces for Hypervisors to run VMs

• Intel provides the VTx interface
• AMD provides the AMD-v interface

• These special ISA interfaces allow the Hypervisors to efficiently
emulate privileged instructions executed by the guest OS.

• When guest OS executes a privileged instruction
• Hardware traps the instruction to the hypervisor
• Hypervisor checks whether instruction must be emulated.
• If so, Hypervisor reproduces the effect of the privileged operation.

Execution of Privileged Instruction by Guest

Resource Control
• Issue: How to retain control of resources in the Hypervisor?
• Timer interval control performed by Hypervisor
• Also, guest OS is not allowed to read the timer value

• Guest OS sees a virtual interval timer
• Hypervisor also gains control whenever guest OS executes

privileged instructions.

Memory Virtualization for VMs
Traditional virtual memory

Virtual Address Space

Physical Address Space

Page Table

Virtual memory for VMs

Virtual Address Space

Guest Physical Address Space

Physical Address Space

First-level Page Table

Second-level Page Table

• Guest OS in each VM sees a “guest”-physical address (GPA) space instead of
the physical addresses

• Often hardware supports two-level page tables
• EPT in Intel VT-x and NPT in AMD-v

• When hardware doesn’t, then Hypervisor needs to emulate two-level page
tables using “shadow page tables”.

Shadow Page Table
(optional)

I/O Virtualization for VMs
• Hypervisor provides a virtual version of each physical device
• I/O activity directed at the virtual device is trapped by Hypervisor and converted to equivalent

request for the physical device.
• Options:

• Device emulation
• Hypervisor traps and emulates each I/O instruction from Guest in Hypervisor.
• Very slow.
• Difficult to emulate the effect of combinations of I/O instructions.

• Para-virtual devices
• Special device drivers inserted in guest OS to talk to Hypervisor.
• Most common.

• Direct device access
• Allow the VM to directly access physical device.
• Fastest option but not scalable.
• Requires IOMMU and VT-d support from hardware.

