Introduction to Virtual Machines

Kartik Gopalan

From

“HSSV”, Bugnion, Neih, Tsafrir

“Virtual Machines”, Smith and Nair, Chapter 1
Also, Chapter 7 Andrew Tanenbaum’s book

 “Virtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing
computer systems resources to provide extraordinary system
flexibility and support for certain unique applications”.

—Robert. P. Goldberg, IEEE Computer, 1974

The Rise and Fall of Virtual Machines

e 1970s:

e IBM mainframes run VMs and hardware supports not just single-level,
but also nested virtualization.

* Hundreds of papers on virtualization.

* Goldberg and Popek’s seminal paper on formal requirements of
virtualization support.

* 1980s and 1990s:
» Personal computers (temporarily) obviate the need for VMs.

* x86. MIPS, Sparc processors have no hardware support for
virtualization

e UNIX, Windows, Linux don’t include virtualization support.

VMs — Back from Dead (or the Second Coming)

* 1997: DISCO paper revisits for running commodity OS on SMP machines
* 1999: VMWare releases VM Ware workstation for x86 CPUs.
« Early 2000s:
« VMWare ESX server, VirtualPC, Xen, Denali, Cells.
« Still no hardware support for virtualization
e Late 2000s
« AMD-V, Intel VT-x, VT-d etc.
 Turtles paper: Nested Virtualization revisited
e 2010s:
e Multi-billion $ industry.

 All cloud platforms are virtualized.

* But wait...the cycle may be turning back.

» Bare-metal clouds
» “Say Goodbye to Virtualization for a Safer Cloud”, HotCloud 2018

Definitions

 Virtualization 1s the application of the layering principle through
enforced modularity, [whereby the exposed virtual resource 1s
1dentical to the underlying physical resource being virtualized.]

A virtual machine is an abstraction of a complete compute
environment through the com- bined virtualization of the
processor, memory, and I/O components of a computer.

* The hypervisor is a specialized piece of system software that
manages and runs virtual ma- chines.

* The virtual machine monitor (VMM) refers to the portion of the
hypervisor that focuses on the CPU and memory virtualization.

Forms of Virtualization

Abstraction

Virtualization Virtualization Virtualization
o
2 X X X X X
o
ES (a) Multiplexing (b) Aggregation (c) Emulation
>
=
= One-to-many Many-to-many One-to-another

Note that the three are not mutually exclusive.
 Many-to-many virtualization
 Emulating many I/O devices on a single physical disk

Virtual Machines

* Logical/Emulated representations of full computing system environment
 CPU + memory + I/0

* Implemented by adding layers of software to the real machine to support the
desired VM architecture.

* Uses:
e Multiple OSes on one machine, including legacy OSes
 [solation
* Enhanced security
« Live migration of servers
 Virtual environment for testing and development
« Platform emulation
* On-the-fly optimization

« Realizing ISAs not found in physical machines

Interfaces of a computer system

D

1y
Application
Programs
@
Libraries
©) ©) Software
A N7
Operating System USGI' ISA . 7
e v System ISA : 8
: emory
Drivers Manager Scheduler Syscalls . 3
Execution Hardware T
@— API : 2,7
o gy Memey
e ~—" | Translation
System Interconnect
(bus)
>~ AD-— D> Hordware
Controllers Controllers
a3
I/O Devices Wi
i Memo
Networking Y

Two Types of VMs

e Process VM
 Virtualizes the ABI Guest

Runtime

e Virtualization software = Runtime

* Runs in non-privileged mode (user
space)

Host

* Performs binary translation.

e Terminates when guest process
terminates.

e System VM
* Virtualizes the ISA el

* Virtualization software = Hypervisor

* Runs in privileged mode VMM

 Traps and emulates privileged

. . Host
1nstructions

» Lasts as long as physical host is alive

Application Process

Hardware

Applications

Virtualizing
Software
R ELLLLER

Hardware

Application Process
NN NN NN NN

Virtual
Machine

Applications

Virtual
Machine

Process Virtual Machines

d Process in a multiprogramming OS
e Standard OS syscall interface + instruction set
e Multiple processes, each with its own address space and virtual machine view.

J Emulators TIA-32 Windows APP

e Support one ISA on hardware designed for another ISA .

e Interpreter: Windows NT Runtime
» Fetches, decodes and emulates individual instructions. Slow.

e Dynamic Binary Translator: Alpha ISA

» Blocks of source instructions converted to target instructions. Digl"l'Cd FX132 Emulator
 Translated blocks cached to exploit locality.

J Same ISA Binary Optimizers
e Optimize code on the fly Java Application

e Same as emulators except source and target [SAs are the same

J Language-based VMs

_ _ Java Virtual Machine
e Virtual ISA (bytecode) designed for platform independence
¢ Platform-dependent VM executes virtual ISA OS
e E.g. Sun’s JVM and Microsoft’s CLI (part of .NET) Teer ISA

Both are stack-based VMs that run on register-based m/c. ISA

System Virtual Machines

(focus of this lecture)

Hypervisor

J Also called Virtual Machine
Monitor (VMM)

3 A hypervisor is an operating system PPS pps pPps

for operating systems

e Provides a virtual execution Guest Guest Guest
environment for an entire OS and 0S 1 0S 2 0S 3
its applications

e Controls access to hardware

Hypervisor
resources B
e When guest OS executes a
privileged instruction,
Hardware

Hypervisor intercepts the
instruction, checks for
correctness and emulates the
instruction.

Type 1 Hypervisors (Classical System VMs)

JHypervisor executes natively on the host ISA
Jd Hypervisor directly controls hardware and provides all device drivers
J Hypervisor emulates sensitive instructions executed by the Guest OS

JdE.g. KVM and VMWare ESX Server

Windows Linux
apps. apps.

Windows Linux

|A-32

Type-2 Hypervisors (Hosted VMs)

O A host OS controls the hardware

O The Hypervisor runs partly in process space and partly in the host
kernel

O Hypervisor Relies on host OS to provide drivers
O E.g. VMWare Desktop Client | @1
dofws

\"'o'. | |
nativey bpl

applidatigns

o)

cagong

Windows

VIV

Linux

x86 PC

Para-virtualized VMs

JdModify guest OS for better performance

dTraditional Hypervisors provide full-virtualization

e They expose to VMs virtual hardware that is functionally identical to the underlying
physical hardware.

e Advantage : allows unmodified guest OS to execute

e Disadvantage: Sensitive instructions must be trapped and emulated by Hypervisor.
e E.g. KVM and VMWare ESX provide full virtualization

J Para-virtualized VM

e Sees a virtual hardware abstraction that 1s similar, but not identical to the real
hardware.

e Guest OS is modified to replace sensitive instructions with “hypercalls” to the
Hypervisor.

e Advantage: Results in lower performance overhead
e Disadvantage: Needs modification to the guest OS.
e E.g. Xen provides both para-virtual as well as full-virtualization

J Often traditional Hypervisors are partially para-virtualizated

Q Device drivers in guest OS may be para-virtualized whereas CPU and Memory
may be fully virtualized.

Whole System VMs: Emulation

J Host and Guest ISA are different

J So emulation 1s required

J Hosted VM + emulation

J E.g. Virtual PC (Windows on MAC)

Windows apps.

Windows

Co-designed VMs

dThe hypervisor 1s designed closely with (and possibly built
into) a specific type of hardware ISA (or native ISA).

4 Goal: Performance improvement of existing ISA (or guest ISA)
during runtime.

Jd Hypervisor performs Emulation from Guest ISA to Native ISA.

J E.g. Transmeta Crusoe

e Native ISA based on VLIW
e (Guest [SA = x86

e (Goal power savings

Taxonomy

Process VMs | System VMs

same IS | different
| SA
It Dynamic | Classic Whole
programmed Translators | OS5 VMs System VMs
(S ' '
Systems : | !
Cynamic HLL ! IMs | Hosted Co-Designed
Optmizers oS VIvis VIS
I
|

Para-virtualized VMs

Hardware Virtual Machines

Versatility

Java App
JVM

v
Linux [A-32

VMWare

Windows TA-32

Code Morphing

Crusoe VLIW

What can you do with system VMs?

Apps 2
OS2
Apps 2 Apps 1

0S2 Gape 0S 1

OS 1 '

ISA 1 ISA 1 ISA 1

Emulation & Replication Composition
Optimization

d Emulation: Mix-and-match cross-platform portability

J Optimization: Usually done with emulation for platform-specific performance
improvement

4 Replication: Multiple VMs on single platform

d Composition: form more complex flexible systems

Virtualizing individual resources 1n
System VMs

CPU Virtualization for VMs

« Each VM sees a set of “virtual CPUs”

* Hypervisors must emulate privileged instructions 1ssued by guest OS.

* Modern ISAs provide special interfaces for Hypervisors to run VMs
* Intel provides the VTx interface

« AMD provides the AMD-v interface

» These special ISA interfaces allow the Hypervisors to efficiently
emulate privileged instructions executed by the guest OS.

 When guest OS executes a privileged instruction
e Hardware traps the instruction to the hypervisor
* Hypervisor checks whether instruction must be emulated.
 [f so, Hypervisor reproduces the effect of the privileged operation.

Execution of Privileged Instruction by Guest

Instruction
trap occurs

Dispatcher
These instructions = Privileged

desire to change ins .
machine resources, il ;
e.g., load relocation l’r:rstruction

bounds register Privileged
Al Instruction
Privileged

Instruction

These instructions do not
change machine resources
but access privileged
resources, e.g., /N, OUT,
Write TLB

Interpreter
Routine 1

Interpreter
Routine 2

Interpreter

Routine n | '

Check privilege level in VM
Emulate instruction
Compute target

| Restore mode to user
Jump to target

Resource Control

* Issue: How to retain control of resources in the Hypervisor?
* Timer interval control performed by Hypervisor
* Also, guest OS 1s not allowed to read the timer value

* Guest OS sees a virtual interval timer

* Hypervisor also gains control whenever guest OS executes
privileged instructions.

VMM determines VMM restores
next VM to be architected state
activated for next VM
Timer VMM saves VMM sets timer VMM sets PC to timer
interrupt architected state interval and interrupt handler of
occeurs of running VM enables interrupts OS in next VM
l e l ,, |
First VIV VMM Active M Active

Figure 8.4 Actions Taken by the VMM in Retiring One Virtual Machine and Activating the Next Virtual Machise

Memory Virtualization for VMs

Traditional virtual memory Virtual memory for VMs
Virtual Address Space Virtual Address Space
Page Table First-level Page Table
v v
Physical Address Space Guest Physical Address Space

Second-level Page Table

Shadow Page Table
(optional) \

» Guest OS in each VM sees a “guest”-physical address (GPA) space instead of
the physical addresses
 Often hardware supports two-level page tables
 EPT in Intel VT-x and NPT in AMD-v
 When hardware doesn’t, then Hypervisor needs to emulate two-level page
tables using “shadow page tables™.

v
Physical Address Space

I/O Virtualization for VMs

* Hypervisor provides a virtual version of each physical device

» T/O activity directed at the virtual device is trapped by Hypervisor and converted to equivalent
request for the physical device.

» Options:
» Device emulation
» Hypervisor traps and emulates each I/O instruction from Guest in Hypervisor.
* Very slow.
 Difficult to emulate the effect of combinations of I/O instructions.
» Para-virtual devices
» Special device drivers inserted in guest OS to talk to Hypervisor.
* Most common.
» Direct device access
« Allow the VM to directly access physical device.
» Fastest option but not scalable.
» Requires IOMMU and VT-d support from hardware.

