System Design Techniques

[Srinivas and Keshav]
[Butler Lampson’s paper]

System Design

e The art and science of putting together (distributed) resources into
a harmonious whole.

e Not a clear cut science
e A lot depends on good judgment and experience
o Cannot easily quantify simplicity, scalability, modularity,
usability, extensibility, elegance.

o Yet tradeoffs are necessary among these

e But we can identify some general principles of good design.

Performance Metrics and Constraints

e Some resources are more constrained than others
o E.g. computational power vs. I/O bandwidth
o Former is unconstrained (almost!), while latter is constrained

e Performance metric measures some aspect of system performance
o Throughput, delay, cost, development time, failure rate

e Design space defined by performance metrics and resource constraints.

e Trade unconstrained resources for constrained ones to maximize the utility.
o E.g. use computational power to compress data so that less bandwidth is required.

Common resources

o [ime

o Latency, development time, mean time between failures
e Space

o Memory, bandwidth (?)

e Computation
o Less of an issue these days

e Money
e Labor

e Social constraints
o Standards, market requirements

e Scaling
o Design constraint rather than resource

Balanced Systems

e Bottleneck resource
o One which is most constrained

e System performance improves only if we devote additional resources to the bottleneck.
e Conversely, decreasing the unconstrained resource does not impact system
performance.
o Why reduce? Lower cost without reducing performance.

e Balanced system: All resources are equally constrained.

e Henry Ford’s Model T
o A balanced car! No part outlives any other part.

Common design techniques

O

O

O

O

O

Multiplexing
Time vs. space and
money
Pipelining and Parallelism
Compute units vs. time
Batching
Response time vs.
Throughput
Exploiting Locality
Space vs. time
Speedup the common case
Hierarchy
Scaling

Binding and Indirection
Virtualization
Randomization

Soft State

Explicit State Exchange
Hysteresis

Seperating Control and
Data

Extensibility

Multiplexing

Trading time for space and money

e Sharing single resource among many users
o E.g.
o Teller at a bank : Space over waiting time
o Long Distance Trunks : Space (capacity) over queuing delay.

e Multiplexing virtualizes the shared physical resource.

e Server controls access to the resource
o Boarding the plane
o Link scheduling

e Statistical Multiplexing
o Overcommitting a given some probability that not all allocations are fully utilized
o Temporal vs. spatial
= Doctor's appointment schedule
= Airplane seats

Pipelining and Parallelism

Trading computation for time

e Parallelism
o Use N processors for N independent sub tasks

e Pipelining
o Use N stages for serially dependent tasks

e E.g. used extensively in data forwarding path of routers.

e Linear speedup: if throughput increases by a factor of N for N compute units. Smaller
otherwise.

e |n both cases, speedup limited by the slowest processor or stage.

Batching

Trading response time for throughput
e Accumulate a number of tasks, then execute.

e Effective when
1. Task overhead increases sub-linearly with number of tasks
2. Accumulation time is not significant

e Example:
o Interrupt coalescing in network adaptors
o Character batching in remote login sessions

Exploiting Locality

Trading space for time
Also called caching

Spatial vs. temporal locality

Examples
- Instruction and data caches
- Web caches
- Route lookup
- File system buffering
- Virtual Memory Paging

Optimizing the common case

e The 80/20 rule

o 80% of time is spent in 20% of code

e Challenge: How to identify the 20%?

o Instrument and measure

e Once you do, optimize the heck out of 20%

e Examples
o RISC machines
o Router data path : Process common case in hardware.

Hierarchy, Binding, Indirection

e Hierarchy
o Common technique to scale
o Loose vs. strict hierarchy
» E.g. Local ISPs may directly connect to each other

e Binding
o Mapping from abstraction to specifics

e Indirection
o Reading the binding translation from a well known location

e Examples
o Machine name ==> |P address
o Alias ==> Email address
o Virtual memory: Virtual page # ==> Physical page #
o Mobile communication: Phone number ==> device

Virtualization, Randomization

e Virtualization
o Combines multiplexing and indirection

o E.g. Names of call center reps., CPU sharing, Virtual memory, Virtual
Machines, VPNs, VONs, Web hosting.

e Randomization

o To break a tie without knowing number of contenders.
o E.g. CSMA/CD, routing (??), multicast NACK implosion.

Soft State

e Hard state
o once installed, needs to be explicitly removed
o Complicates recovery upon failure

e Soft state
o State removed unless its periodically refreshed
o Trade bandwidth and computation for robustness and simplicity
o Challenge: How to choose deletion time?

Hysteresis

e Hysteresis
o To prevent rapid oscillation of a value around a threshold.
o Soln: Make threshold state-dependent
o E.g. 0.1 threshold in state A and —0.1 threshold in state B. So value must
change at least 0.2 for state change.
o E.g. Handover between base stations

Separating Data and Control, Extensibility

e Data vs. Control
o Separate one-time actions vs. repetitive ones
o Pros: Helps make the data plane fast.
o Cons: More state needed in the network
O

E.g. connection establishment vs. data forwarding in Virtual Circuit networks
= Packets only carry VCI. Control plane is separate.
 How about datagram networks (IP)?

e Extensibility
o Allow hooks for future growth
o E.g. IP version field, HTTP version field, data rate exchange among modems,
kernel modules.

Summary

A repertoire of techniques to apply in different
situations.

Not all may be applicable or appropriate.

Use a good idea more than once, but only when
appropriate.

