
System Design Techniques

[Srinivas and Keshav]
[Butler Lampson’s paper]



System Design
● The art and science of putting together (distributed) resources into 

a harmonious whole.

● Not a clear cut science

● A lot depends on good judgment and experience
o Cannot easily quantify simplicity, scalability, modularity, 

usability, extensibility, elegance.
o Yet tradeoffs are necessary among these

● But we can identify some general principles of good design.



Performance Metrics and Constraints
● Some resources are more constrained than others

o E.g. computational power vs. I/O bandwidth
o Former is unconstrained (almost!), while latter is constrained

● Performance metric measures some aspect of system performance
o Throughput, delay, cost, development time, failure rate

● Design space defined by performance metrics and resource constraints.

● Trade unconstrained resources for constrained ones to maximize the utility.
o E.g. use computational power to compress data so that less bandwidth is required.



Common resources
● Time

o Latency, development time, mean time between failures
● Space

o Memory, bandwidth (?)
● Computation

o Less of an issue these days
● Money
● Labor
● Social constraints

o Standards, market requirements
● Scaling

o Design constraint rather than resource



Balanced Systems
● Bottleneck resource

o One which is most constrained

● System performance improves only if we devote additional resources to the bottleneck.

● Conversely, decreasing the unconstrained resource does not impact system 
performance.
o Why reduce? Lower cost without reducing performance.

● Balanced system: All resources are equally constrained.

● Henry Ford’s Model T 
o A balanced car! No part outlives any other part.



Common design techniques
● Multiplexing

o Time vs. space and 
money

● Pipelining and Parallelism
o Compute units vs. time

● Batching
o Response time vs. 

Throughput
● Exploiting Locality

o Space vs. time
● Speedup the common case
● Hierarchy

o Scaling

● Binding and Indirection
● Virtualization
● Randomization
● Soft State
● Explicit State Exchange
● Hysteresis
● Seperating Control and 

Data
● Extensibility



Multiplexing
Trading time for space and money

● Sharing single resource among many users
● E.g.

o Teller at a bank : Space over waiting time
o Long Distance Trunks : Space (capacity) over queuing delay.

● Multiplexing virtualizes the shared physical resource.

● Server controls access to the resource
o Boarding the plane
o Link scheduling

● Statistical Multiplexing
o Overcommitting a given some probability that not all allocations are fully utilized
o Temporal vs. spatial

▪ Doctor's appointment schedule
▪ Airplane seats



Pipelining and Parallelism
Trading computation for time

● Parallelism
o Use N processors for N independent sub tasks

● Pipelining
o Use N stages for serially dependent tasks

● E.g. used extensively in data forwarding path of routers.

● Linear speedup: if throughput increases by a factor of N for N compute units. Smaller 
otherwise.

● In both cases, speedup limited by the slowest processor or stage.



Batching
Trading response time for throughput
● Accumulate a number of tasks, then execute.

● Effective when 
1. Task overhead increases sub-linearly with number of tasks
2. Accumulation time is not significant

● Example: 
o Interrupt coalescing in network adaptors
o Character batching in remote login sessions



Exploiting Locality
Trading space for time

● Also called caching

● Spatial vs. temporal locality

● Examples
o Instruction and data caches
o Web caches
o Route lookup
o File system buffering
o Virtual Memory Paging



Optimizing the common case
● The 80/20 rule

o 80% of time is spent in 20% of code

● Challenge: How to identify the 20%?
o Instrument and measure

● Once you do, optimize the heck out of 20%

● Examples
o RISC machines
o Router data path : Process common case in hardware.



Hierarchy, Binding, Indirection
● Hierarchy

o Common technique to scale
o Loose vs. strict hierarchy

▪ E.g. Local ISPs may directly connect to each other

● Binding
o Mapping from abstraction to specifics

● Indirection
o Reading the binding translation from a well known location

● Examples
o Machine name ==> IP address
o Alias ==> Email address
o Virtual memory: Virtual page # ==> Physical page #
o Mobile communication: Phone number ==> device



Virtualization, Randomization
● Virtualization

o Combines multiplexing and indirection
o E.g. Names of call center reps., CPU sharing, Virtual memory, Virtual 

Machines, VPNs, VONs, Web hosting.

● Randomization
o To break a tie without knowing number of contenders.
o E.g. CSMA/CD, routing (??), multicast NACK implosion.



Soft State
● Hard state

o once installed, needs to be explicitly removed
o Complicates recovery upon failure

● Soft state
o State removed unless its periodically refreshed
o Trade bandwidth and computation for robustness and simplicity
o Challenge: How to choose deletion time?



Hysteresis
● Hysteresis

o To prevent rapid oscillation of a value around a threshold.
o Soln: Make threshold state-dependent
o E.g. 0.1 threshold in state A and –0.1 threshold in state B. So value must 

change at least 0.2 for state change.
o E.g. Handover between base stations



Separating Data and Control, Extensibility
● Data vs. Control

o Separate one-time actions vs. repetitive ones
o Pros: Helps make the data plane fast.
o Cons: More state needed in the network
o E.g. connection establishment vs. data forwarding in Virtual Circuit networks

▪ Packets only carry VCI. Control plane is separate.
▪ How about datagram networks (IP)?

● Extensibility
o Allow hooks for future growth
o E.g. IP version field, HTTP version field, data rate exchange among modems, 

kernel modules.



Summary
● A repertoire of techniques to apply in different 

situations.

● Not all may be applicable or appropriate.

● Use a good idea more than once, but only when 
appropriate.


