
Intel VT-x and VT-i overview



Issues with traditional VMM designs

❑ Ring deprivileging : 
❍ A technique that runs all guest software at a privilege level 

greater than 0. 
❍ 0/1/3 model : guest OS runs at level 1 

• Can’t be used for IA-32 processors in 64-bit mode 
❍ 0/3/3 model : guest OS runs at level 3 

• Level 3 shared with apps 
• ➔ Ring compression 

❑ Ring aliasing: 
❍ Problems due to not running a guest OS at its intended 

privilege level 
❍ Guest OS can tell it is not at level 0



Issues with traditional VMM designs
❑ Address space compression 

❍ VMM needs to occupy part of the guest’s virtual address space 

❍ How to protect this part of virtual address space from guest? 

❑ Non-faulting accesses to privileged state 
❍ Some accesses to privileged resources do not fault 
❍ E.g. LGDT, LIDT, LLDT etc will fault,  
❍ But SGDT, SIDT, SLDT etc will not fault 

❑ System calls 
❍ SYSENTER will transition to ring 0, where VMM executes 
❍ SYSEXIT will fault if executed outside ring 0 
❍ Can end up with too many transitions via VMM at ring 0



Issues with traditional VMM designs

❑ Interrupt virtualization 
❍ Guest attempts to control interrupt masking will fault due to ring 

deprivileging 
❍ That is fine, BUT 
❍ Guest OSes frequently mask/unmask interrupts. 
❍ So it’s a big performance overhead 
❍ VMM intervention not needed for all such accesses 

❑ Hidden state problem 
❍ Some processor state hidden from all software 

• Not accessible via registers 
• E.g. hidden descriptor caches 

❍ Not a problem if only a single OS executes 
❍ BUT, for better performance, one may want to save this hidden 

state when switching between guest OSes



VTx and VTi Overview



VT-x:  
Ring Aliasing and Ring Compression

❑ Applications execute in ring 3 

❑ Guest OS executes deprivileged in ring 0 

❑ VMM executes in a new mode with highest 
privilege



VT-x: Two operating modes

❑ VMX root operation: 
❍ Fully privileged mode for VMM execution 

❑ VMX non-root operation: 
❍ Not fully privileged, intended for guest OS 

❍ Deprivileges guest OS without using up rings for the 
VMM 

❑ These modes are orthogonal to rings



VT-x: VM Entry and VM Exit
❑ New Data Structure: Virtual Machine Control Structure (VMCS) 

❍ Guest State Area 
❍ Host State Area 
❍ Analogous in some respects to Task State Structure (TSS) for processes 

and used during context switches. 

❑ VM Entry:  
❍ Transfers control from VMM to guest 
❍ Via two instructions:  

• VMLAUNCH on first entry 
• VMRESUME on subsequent entries 

❍ Loads processor state from guest state area in VMCS 

❑ VM Exit:  
❍ Transfer control from guest to VMM 
❍ Via VMEXIT instruction 
❍ Save processor state to guest state area in VMCS 
❍ Load VMM state from the host state area in VMCS



VT-x: Virtual Machine Control Structure 
(VMCS)

❑ One control structure per virtual processor 

❑ Located in physical memory 

❑ Contains control information for  
❍ VM execution 
❍ EXIT conditions and exit information 
❍ ENTRY conditions 

❑ VMCS format not defined (?) 
❍ Perhaps dependent on the implementation of hypervisor



VT-i: Two operating modes
❑ Determined by PSR.vm (processor status register) 

❍ PSR.vm = 0   ➔   VMM operation 
❍ PSR.vm = 1    ➔   Guest operation 

❑ Controls the number of virtual address bits available to the guest OS. 
❍ Uppermost address bit not available to guest OS 
❍ ➔ gives VMM a dedicated virtual address space 

❑ Mode switching: 
❍ Access to privileged resources by the guest software results in 

intercepts to the VMM. (similar to VM Exit in VT-x) 
❍ Privileged resources: TLB, Privileged registers (PSR, control),etc. 

❑ Virtual Processor Descriptor 
❍ One per virtual processor 
❍ Similar purpose to VMCS in VT-x



Solutions to virtualization 
challenges



Address space compression

❑ VT-x  
❍ Two additional modes mean that guest OS can run at 

level 0 in non-root mode 
❍ But does VMM’s code still map to guest address 

space? 

❑ VT-i  
❍ PSR.vm bit serves a similar purpose 
❍ VMM has a virtual address bit that guest software 

cannot use



Ring aliasing

❑ Allows VMM to run at its intended privilege 
level 
❍ Ring 0 
❍ VT-x ! in non-root mode 
❍ VT-i ! with PSR.vm set to 1



Non-faulting access to privileged state

❑ Two mechanisms 

❍ Support to have such instructions fault to VMM 
• No more scanning and patching needed! 

❍ Support that causes the state to become 
unimportant to VMM 

• E.g. GDT/LDT/IDT operations in IA-32



System calls

❑ Guest runs at level 0 

❑ So SYSENTER/SYSEXIT transition via 
VMM not required



Interrupt virtualization
❑ Ability to control instructions and events that cause  VM exits 

❑ VT-x 
❍ External interrupt exiting control 

• When set, all external interrupts cause VM exits.  
• Guest unable to mask these interrupts 

❍ Interrupt window exiting 
• VM exit occurs whenever guest software is ready to receive interrupts 

❑ VT-i 
❍ Virtualization acceleration field 

• Can allow/prevent guest from controlling interrupt masking 
• Reduce transitions to VMM on each access  to interruption control registers. 

❍ Virtualization disable field 
• Allows VMM to disable virtualization of a particular instruction or resource. 
• Reduces the number of intercepts that VMM handles



Access to hidden state

❑ VT-x 
❍ Guest state area of VMCS includes hidden state 

information 

❑ VT-i  
❍ Similar mechanisms to save necessary hidden 

state information



Other more recent features

❑ Extended Page Tables 
❍ Support for nested paging 
❍ Guest controls first-level page table which provides 

virtual to “Guest-physical” mappings 
❍ VMM controls EPT : Guest-physical to machine-

physical mappings 

❑ Virtual Processor IDs 
❍ To tag TLB entries 
❍ Avoids TLB flush on each VM Entry and VM Exit


