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Abstract—Post-copy is one of the two key techniques (besides
pre-copy) for live migration of virtual machines in data centers.
Post-copy provides deterministic total migration time and low
downtime for write-intensive VMs. However, if post-copy mi-
gration fails for any reason, the migrating VM is lost because
the VM’s latest consistent state is split between the source and
destination nodes during migration. In this paper, we present
PostCopyFT, a new approach to recover a VM after a destination
or network failure during post-copy live migration using an
efficient reverse incremental checkpointing mechanism. We have
implemented and evaluated our approach in the KVM/QEMU
platform. Our experimental results show that the total migration
time of post-copy remains unchanged while maintaining low
failover time, downtime, and application performance overhead.

Index Terms—virtual machine, live migration, fault tolerance

I. INTRODUCTION

Live migration of a virtual machine (VM) refers to the
transfer of an active VM’s execution state from one physical
machine to another. Live migration is a key feature and
selling point for virtualization technologies. Users and service
providers of a virtualized infrastructure have many reasons
to perform live VM migration such as routine maintenance,
load balancing, scaling to meet performance demands, and
consolidation to save energy. For instance, vMotion [38] is
a popular features of VMWare’s ESX server product. Live
migration is also extensively used in Google’s production
infrastructure to perform over a million migrations [35] per
month.

Existing live migration mechanisms aim to move VMs as
quickly as possible and with minimal impact on the applica-
tions and the cluster infrastructure, and indeed these goals have
been extensively studied by both academia and industry. Two
dominant live migration mechanisms underlie all migration
techniques: pre-copy [6], [30] and post-copy [16], [17]. The
two techniques differ in whether a VM’s CPU execution state
is transferred before or after the transfer of its memory pages.
In pre-copy, the VM continues executing at the source while
its memory contents are transferred to the destination over
multiple iterations, at the end of which the CPU execution
state is transferred and the VM is resumed at the destination.
In contrast, post-copy first transfers the VM’s CPU execution
state to the destination, where the VM immediately resumes
execution while, in the background, the memory pages are ac-
tively pushed from source and also retrieved upon page-faults
at the destination. Pre-copy works well for applications that
mostly read from memory whereas post-copy works well for
write-intensive applications that would otherwise prevent pre-

copy iterations from converging. Google’s data centers [35]
use both techniques depending upon the nature of a VM’s
workload.

An important consideration in live VM migration is the
robustness of the migration mechanism itself. Specifically, the
source, the destination, or the network itself can fail during
live migration. Since a VM encapsulates a cloud customer’s
critical workload, it is essential that the VM’s state is preserved
accurately and not lost due to failures during migration. Let’s
consider a VM’s recoverability after a failure during live
migration. In both pre-copy and post-copy, the failure of the
source node during migration results in a permanent loss of
the VM because some or all of the latest state of the VM
resides at the source during migration.

However, the two approaches differ in their response to
failure of the destination node or the network. For pre-copy,
either of these failures is not catastrophic because the source
node still holds an up-to-date copy of the VM’s execution state
from which the VM can be resumed after migration failure.
However, for post-copy, a destination or network failure has a
more severe implication because the latest state of the VM is
split across the source and destination. The destination node
has a more up-to-date copy of the VM’s execution state and
a subset of its memory pages, whereas the source node has
pages that have not yet been sent to the destination.

Thus, a failure of the destination or the network during
post-copy migration also results in a complete loss of the
VM. This failure scenario during post-copy live migration
and the resulting loss of VM has not been addressed in
existing literature. The problem is important because a VM
is particularly vulnerable during migration. VM migration
may last anywhere from a few seconds to several minutes,
depending on factors such as the VM’s memory size and load
on the cluster. Thus the window of vulnerability can be large.
Additionally, since the VM is live, it is executing code that
might communicate over the network with remote entities,
altering the external world’s view of the VM’s state.

In this paper, we propose a solution, called PostCopyFT,
to recover a VM after the failure of destination node or
network during post-copy live migration. The key idea is as
follows. During post-copy, once a VM resumes execution at
the destination, the destination concurrently transmits reverse
incremental checkpoints of the VM back to the source node.
This reverse checkpointing proceeds concurrently, and in
coordination with, forward post-copy migration from source
to destination. If the destination or the network fails during



migration then the source node recovers the VM from the last
consistent checkpoint that it received from the destination.

PostCopyFT supports either periodic or event-based reverse
incremental checkpointing, with different benefits. The reverse
checkpoints are much smaller than full-VM checkpoints be-
cause they consist only of the VM’s modified memory pages
since the last checkpoint, and its CPU and I/O state. For check-
point consistency, PostCopyFT buffers packet transmissions to
external world between successive reverse checkpoints.

We present the implementation and evaluation of a Post-
CopyFT prototype in the KVM/QEMU virtualization platform.
Our results show that, when using PostCopyFT, the total
migration time of post-copy remains unchanged. There is a
small increase in the cumulative downtime experienced by
the VM when using periodic reverse incremental checkpoints,
while event-based checkpoints further reduce this overhead.

The rest of the paper is organized as follows. Section II
provides background of post-copy and pre-copy live migration
techniques. Sections III and IV present the design and the im-
plementation of PostCopyFT, respectively. Section V presents
the evaluation of PostCopyFT using various workloads. Sec-
tion VI presents related work and Section VII concludes the
paper.

II. BACKGROUND

Pre-copy: In pre-copy live migration [6], [30], the VM’s
memory pages are transferred to the destination host over
multiple iterations. In the first iteration, the entire memory
state of the VM is transfered and the subsequent iterations
transfer only the modified memory pages. When the estimated
downtime (the duration when the VM is suspended during
migration) is less than a threshold, the VM on the source host
is paused and the remaining dirty pages, the device state, and
the CPU state are transfered to the destination. The VM is
then resumed on the destination.

Post-copy: In post-copy live migration [16], [17], the VM
is first suspended on the source host and the CPU state is
transferred to the destination host where the VM is resumed
immediately. The source then actively sends the memory pages
to the destination. This stage is known as the active push
phase, with the expectation that most pages would be received
by the destination before they are accessed by the VM. If
the VM accesses a page that has not yet received by the
destination, then a page fault is triggered and the source sends
the faulted page to the destination (called demand paging).
During post-copy, after the VM resumes on the destination,
the guest OS and all applications inside the VM continue
execution on the destination machine.

VM Replication: High availability solutions, such as Re-
mus [7], maintain a consistent replica of a VM during its
normal execution. A checkpoint cycle in Remus consists
of four stages: VM execution, VM replication, checkpoint
transfer, and buffer release. In the first stage, the VM executes,
the outgoing network packets of the VM are buffered, and the
incoming network requests are served. The outgoing network
packets are buffered to ensure that the state of the backup

VM will be consistent with the external world during the
restoration, if the primary VM crashes in the middle of a
checkpoint. The buffer cannot hold the packets for too long
as it increases the response latency of the network packets.
When the epoch time, defined by the user, is reached, the VM
is checkpointed (the second stage), which creates a replica of
the primary VM. In this stage, the VM is paused in order
to capture the entire system state accurately. The checkpoint
is then transfered to the backup node (the third stage). Once
the checkpoint is committed to the backup node, the buffered
outputs are released.

III. DESIGN

During the post-copy migration, the VM’s state is split
between the source and the destination nodes. As a result,
a failure of the destination node or in the network during
the migration may lead to the complete loss of the VM.
PostCopyFT is developed to recover the VM in this failure
scenario. Figure 1 shows the architecture of PostCopyFT.

A. Reverse Incremental Checkpointing

The first step of post-copy migration is to transfer the
execution state of the VM, along with a minimal non-pageable
memory state, to the destination. The VM is resumes at the
destination while concurrently receiving the VM’s pages from
the source. PostCopyFT superimposes a reverse incremental
checkpointing mechanism over this forward transfer of VM
state. Specifically, once the migrating VM is resumed at
the destination, PostCopyFT captures the the VM’s initial
execution state and memory at the destination and transfers
them to a checkpoint store. This checkpoint store is an in-
memory key-value store located at either the source node or a
third staging node. Then onwards, PostCopyFT captures any
incremental changes in the VM’s state, including the execution
state and any modified memory pages, either periodically or
upon an I/O activity of the VM, and forwards these to the
checkpoint store. This checkpointing mechanism stops once
post-copy migration successful completes the VM’s migration
to the destination.

B. Failure Recovery

When the network or the destination node fails due to
a hardware or software failure, the source node triggers a
restoration process. The source node uses heartbeat messages
to monitor the liveness and reachability of the destination
node. When successive heartbeat messages are not acknowl-
edged by the destination, the migration is considered to have
failed. The source then recovers the VM by restoring the last
consistent copy of each memory page from the checkpoint
store on the VM’s memory address space. Pages not modified
by the destination do not need to be overwritten. Finally, the
VM is resumed at the source from the latest checkpointed CPU
execution state to complete the VM’s recovery,



C. Network Buffering

To ensure the consistency of VM checkpoints, Post-
CopyFT buffers packet transmissions to external world be-
tween successive incremental checkpoints. The incoming net-
work packets of the migrating VM are delivered to the VM
immediately, but the outgoing network packets are buffered
until the current reverse checkpoint is committed. The packets
in the network buffer are then transmitted and the VM is
resumed. This ensures that no network packets are transmitted
before the corresponding checkpoint is committed to the
checkpoint store. Thus, if the destination or network fails
during the migration, PostCopyFT guarantees that the latest
committed checkpoint reflects a consistent state of the VM to
the external world.

D. Checkpointing Overhead Reduction

One of the requirements in PostCopyFT design is that
the reverse incremental checkpointing mechanism should not
significantly increase the total migration time if the migration
succeeds. To satisfy this requirement, reverse checkpointing
is implemented as a separate thread that runs concurrently
with the VM. The only time this thread affects the VM’s
execution is when suspending the VCPUs briefly to capture
their execution state. The active-push phase from the source to
destination runs concurrently with the reverse checkpointing
mechanism even when the VCPUs are paused. This helps
PostCopyFT to achieve similar total migration time as post-
copy live migration.

A second design requirement is that PostCopyFT’s reverse
checkpointing mechanism should not significantly increase
the VM downtime. PostCopyFT introduces the following two
optimizations for this purpose.

Performing incremental VM checkpointing in two
stages: Periodic VM checkpointing may increase the down-
time of migrating memory-write intensive VMs whose mem-
ory pages are dirtied rapidly. To reduce the downtime, Post-
CopyFT performs VM checkpointing in two stages. In Stage
I, PostCopyFT checkpoints only the modified memory pages
of the VM, but not its execution state, which includes the
VM’s CPU and device states. The modified memory pages are
checkpointed without pausing the VM and hence Stage I does
not increase VM downtime. In Stage II, the VM is paused
briefly to capture the VM’s execution state. Once Stage II
is completed, the VM resumes its execution. The committed
checkpoint contains the memory pages checkpointed in both
stages. If a memory page is checkpointed in both stages,
then the page checkpointed in Stage I is overwritten by that
checkpointed in Stage II to ensure that the checkpoint contains
the most up-to-date page. Our experimental results show that
performing checkpointing in two stages significantly reduces
the migration downtime, compared to if the VM was paused
during memory capture.

Storing checkpoints locally: In Stage I, the VM’s memory
states are first copied to a local in-memory storage without
waiting for the checkpoints to be transferred or synchronized
with the staging node storing the checkpoints. After State

II, the VM is resumed and the checkpointed memory and
execution states are transferred to the staging node.

IV. IMPLEMENTATION

PostCopyFT was implemented on the KVM/QEMU [3],
[22] virtualization platform version 2.8.1.1. The guest OS and
applications running inside the migrating VM are unmodified.
Each VM in KVM/QEMU is associated with a userspace man-
agement process, called QEMU, which performs I/O device
emulation and various management functions such as VM
migration and checkpointing. The userspace QEMU process
communicates with a kernel-space hypervisor called KVM,
which uses hardware virtualization features to execute the VM
in guest mode (or non-root mode).

A. Capturing VM’s Memory and Execution State

In parallel to forward post-copy migration, the reverse
incremental checkpointing mechanism is implemented as a
concurrent QEMU thread to capture consistent incremental
checkpoints. To track modified memory pages for successive
incremental checkpoints, PostCopyFT performs dirty page
tracking on the VM executing at the destination node. The
dirty page tracking mechanism represents the VM’s memory
content as a bitmap, in which each bit specifies whether a page
is modified or not. KVM uses this bitmap to identify pages
dirtied by the VM at a given instant. When the VM resumes
on the destination host during post-copy migration, the reverse
checkpointing thread informs KVM to mark all memory pages
as read-only using an ioctl call. When the VM attempts to
write to any of its resident memory pages, a write fault is
triggered, upon which KVM marks the page as read-write and
turns on the corresponding bit in the dirty bitmap. Successive
writes to the same page do not trigger any bitmap updates
until the bitmap is reset for the next checkpointing round. In
each checkpointing iteration, the reverse checkpointing thread
in QEMU retrieves the current dirty bitmap from KVM to
userspace for better manageability. Once QEMU transfers dirty
pages to the checkpoint store, the corresponding dirty bits are
cleared.

The execution state of a VM consists of the CPU and the
I/O device states, which keeps changing during the execution
of the VM. PostCopyFT modifies QEMU’s default method of
capturing the VM’s execution state to include the correspond-
ing checkpoint version number (used to uniquely identify a
checkpoint cycle) in an in-memory QEMUFile data structure.
The QEMUFile structure is then transferred to the checkpoint
store.

Between successive checkpointing rounds, a network barrier
is inserted to buffer outgoing network packets of the migrat-
ing VM. We implemented an event-based VM checkpointing
algorithm to reduce the network packet buffering latency. In
the event-based approach, VM checkpointing is triggered only
when an external event occurs, such as when the VM sends an
outgoing network packet. As a result, the event-based approach
captures the system state less frequently and hence reduces the
migration downtime.



B. Reducing The Migration Downtime

Traversing the bitmap for modified pages and transferring
each modified page to the checkpoint store increases the VM
migration downtime due to the synchronization overhead of
each write request. To address this issue, instead of sending
the checkpoint directly to the checkpoint store on the source
host, the incremental memory changes are first captured in
an in-memory dynamically sized local data structure check-
point stage. Our checkpoint stage is similar to the implemen-
tation of Linux Kernel cache-slab [4], [26]. It consists of a
vector of pointers that point to contiguous memory chunks.
Each memory chunk contains a series of page data and page
keys. Once all chunks are filled, the list is doubled, and new
chunks are allocated. Storing memory states locally reduces
the VM downtime caused by the synchronous writes and
provides the assurance of completeness in checkpoints.

C. Checkpoint Store

Once the VM’s memory states are captured in a check-
pointing cycle, memory states stored in checkpoint stage are
transferred to the checkpoint store at the source node. We
considered several key factors when selecting a checkpoint
store. In order to store incremental checkpoints, the checkpoint
store should be an in-memory cache that provides duplicate
filtering and allows for checkpoint versioning. During a failure
situation, the checkpoint store may contain several checkpoints
captured in different checkpoint iterations. The checkpoint
store needs to maintain each VM checkpoint iteration sepa-
rately along with a version number that represents the most
recently committed checkpoint. That way, there is no ambigu-
ity as to if a checkpoint is complete or not, and we can discard
incomplete checkpoints if a failure occurs in the middle of
a checkpoint. We used Redis [34], an in-memory distributed
key-value store, to implement PostCopyFT’s checkpoint store.
The Redis client resides on the destination host while the Redis
server resides on the source or the staging node. We store the
checkpointed memory state in a map data structure in Redis.
Each memory page is stored as a key-value pair using function
HMSET, where the key is a unique page address consisting
of page block id and page offset, and the value is the page
content. Once the checkpoint is transferred to the checkpoint
store, the checkpoint is marked as complete.

D. Detection of Destination/Network Failure

PostCopyFT uses the heartbeat mechanism as a simple
detector to detect the destination/network failure. The heart-
beat module was implemented as a separate thread on the
source host that continuously monitors the availability of
the destination node by periodically sending ping requests
to the destination. If the heartbeat module cannot reach the
destination host for a time interval, then the destination node is
considered be in a failure state and the source host immediately
triggers a failover.

E. VM Recovery after Failure

After detecting the migration failure, the restoration process
on the source machine tries to restore the VM from the
checkpoints previously received from the destination. Restora-
tion was implemented as a non-live process. To build up the
entire memory state, the restoration process loads the memory
pages for each checkpoint version up to the latest committed
complete checkpoint version number at once into a hashtable
using the HGETALL function provided in Redis. The hashtable
provides the capability to update memory pages with the
most recently modified pages and merge duplicate pages. The
restoration thread then places the page content on the allocated
and mapped host memory address space using mmap(). Next,
the restoration process loads the most recent execution state of
the VM using the GET function and loads the execution state
into a in-memory QEMUFile structure. This file is then passed
to the modified qemu loadvm section start full () function,
which proceeds to unpack and load the execution state. Finally
then VM is resumed.

V. EVALUATION

This section presents the performance results of Post-
CopyFT using the following metrics:

• Total migration time: Time taken to transfer a VM’s state
entirely from the source to the destination host.

• Downtime: Duration that a VM is suspended during the
migration.

• Replication time: Time taken to transfer the checkpoint
to the checkpoint cache store.

• Application performance degradation: The performance
impact on applications running inside the VM during
migration and checkpointing.

• Network Bandwidth degradation: Reduction in network
bandwidth during migration and checkpointing.

• Failover time: Time taken to restore the VM from the
last committed checkpointing during a failure situation.

Our test environment consists of dual six-core 2.1 GHz
Intel Xeon machines with 128GB memory connected through
a Gigabit Ethernet switch with 1 Gbps full-duplex ports.
To avoid network interference and contention between the
migration traffic and the application-specific traffic, separate
NIC interfaces are used for the migration and the application
traffic. VMs in each experiment are configured with 1 vCPU
and 8GB of memory with 4KB page size unless specified
otherwise. Virtual disks are accessed over the network from
an NFS server, which enables each VM to access its storage
from both the source and the destination machines over local
area network.

A. Baseline Comparison of PostCopyFT and Post-copy

To measure the total migration time and the downtime of
PostCopyFT, the checkpointing thread ran continuously on the
destination host without triggering a failure in the migration
in order to evaluate the overhead of VM checkpointing.
Figure 2 compares the time taken to migrate an idle VM
using PostCopyFT and the KVM/QEMU vanilla post-copy



Fig. 2. The total migration time of PostCopyFT and Post-copy for migrating
1GB −−8GB idle VMs.

implementation [16], [17]. The size of the VM ranges from
1GB to 8GB. As shown in Figure 2, the total migration time
of PostCopyFT and post-copy is almost the same for idle VMs
with different sizes.

Figure 3 shows the downtime and the replication time of
migrating an idle VM using PostCopyFT. The downtime of
PostCopyFT for migrating an idle VM ranges between 1.1
seconds and 1.9 seconds, which is higher than that of post-
copy (9ms−11.6ms). This is because the VM pauses contin-
uously for every checkpointing interval (100µs) to checkpoint
memory states. The figure also shows that the replication
time is much higher than the downtime. This is because VM
checkpointing is performed in two stages and only stage II
pauses the VM (the details are given in Section III-D).

Fig. 3. The downtime and replication time for migrating idle VMs with
different sizes.

Figure 4 shows the total migration time for migrating a
memory-write intensive VM using PostCopyFT and post-copy.
The memory-write intensive application running inside the
VM is a C program that continuously writes random numbers
to a large region of main memory. The size of the working
set (i.e., the size of the memory written) ranges from 1GB
to 5GB. The figure shows that the total migration time of
PostCopyFT is almost the same as post-copy. This is because,
even when the VM is paused for checkpointing, the destination
is actively gathering pages from the source host.

Figure 5 shows the downtime and the replication time of
PostCopyFT for migrating a memory-write intensive VM.

Fig. 4. The total migration time of migrating memory write-intensive VMs
using post-copy and PostCopyFT.

Fig. 5. The downtime and replication time for migrating memory-write
intensive VMs using PostCopyFT.

The downtime of PostCopyFT ranges between 1.8s and 2.2s,
which is higher than that of post-copy (7ms − 9ms). The
downtime respect to migration thread is almost constant for
PostCopyFT and post-copy as the migration process is not
interrupted by PostCopyFT during its checkpointing phase.
But with the added overhead due to frequent checkpointing,
the migration downtime of PostCopyFT increases. The figure
also shows that the replication time increases when the size
of the working set increases. This is because when the size
of the working set increases, the number of dirty pages also
increases.

B. Impact of Checkpointing Interval

This section evaluates the impact of the checkpointing
interval on VM migration and the overhead incurred due
to checkpointing. Figure 6 shows the total migration time
of migrating an idle VM when the checkpointing interval
varies between 0.1ms and 100ms. Checkpointing interval 0
refers to the vanilla post-copy migration. PostCopyFT imposes
0.2% − 0.9% overhead compared to the post-copy migration
and the overhead decreases linearly when the checkpoint-
ing interval increases. Figure 7 shows the downtime and
the replication time of PostCopyFT by varying the check-
pointing interval for idle VMs. The figure shows that when
the checkpointing interval decreases, the downtime increases.
This is because, when the checkpointing interval is low, the
checkpointing is performed frequently with the overhead of



Fig. 6. The impact of checkpointing interval on the total migration time (idle
VM).

Fig. 7. The impact of checkpointing interval on the migration downtime and
the replication time (idle VM).

bitmap synchronization, state transfer, network buffering, and
the pause of the VM.

Fig. 8. The impact of checkpointing interval on the total migration time when
migrating a 5GB memory-write intensive VM.

Figure 8 shows the total migration time of migrating a 5GB
memory-write intensive VM when the checkpointing interval
varies between 0.1ms and 100ms. Checkpointing interval
0 refers to the post-copy migration. PostCopyFT imposes
0.1% − 0.7% overhead compared to the post-copy migration
and the overhead decreases linearly when the checkpointing

Fig. 9. The impact of checkpointing interval on downtime and replication
time when migrating a 5GB memory-write intensive VM.

interval increases. Figure 9 shows the downtime and the
replication time of migrating the 5GB memory-write intensive
VM. The figure shows that the downtime and the replication
time decrease when the checkpointing interval increases. This
is because, when the checkpointing interval decreases, more
memory pages get dirty, which results in higher bitmap
synchronizations and larger checkpoint state.

C. Performance Impact on CPU-Intensive Workload

We measured how PostCopyFT and post-copy affect the
performance of CPU-intensive workloads using the QuickSort
benchmark, which repeatedly allocated 400 Bytes of memory,
wrote random integers to the allocated memory segment,
and sorted the integers using the QuickSort algorithm. We
measured the number of sorts performed (i.e., the number
of times the random integers are written to memory and are
sorted) per second during the migration. Figure 10 shows that
PostCopyFT has similar performance as post-copy and there
is no observable adverse impact of the reverse incremental
checkpointing mechanism during migration.
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Fig. 10. The performance impact of post-copy and PostCopyFT on a CPU-
intensive QuickSort benchmark.

D. Network Buffering Overhead

VM migration itself is a network intensive process. To
mitigate the contention of network resources between the



migration process and the applications running inside the VM,
PostCopyFT uses separate NIC interfaces for the migration
traffic and the application traffic. This section presents the
impact of PostCopyFT’s periodic and event-based checkpoint-
ing mechanisms on network-intensive VMs. As the event-
based checkpointing mechanism captures the VM’s memory
states only when the VM transmits an outgoing network
packet, compared to the periodic checkpointing, the event-
based checkpointing reduces the network latency and the time
taken to pause/restart the VM and synchronize the dirty page
bitmap. The event based checkpointing mechanism shows
2 − 3 times lower downtime than the periodic checkpointing
mechanism.

We used iPerf [18], a network intensive application to
measure the outgoing and incoming network bandwidth of
PostCopyFT, where the maximum network bandwidth is set
to 100Mbit/s. The iPerf server runs on an external machine
(i.e neither source nor destination host) in the same cluster
and the iPerf client runs inside the migrating VM. During
the migration, the client continuously sends data to the server
through a TCP and UDP connection as shown in Figures 11
and 12. The network bandwidth is captured using iPerf ev-
ery 0.1 second. Bandwidth fluctuations are seen for both
TCP based and UDP based outgoing network traffic due to
the impact of network buffering and releasing. Compared
to the periodic checkpointing mechanism, the event-based
checkpointing mechanism shows more frequent buffer releases
and hence has higher bandwidth. Low bandwidth throughput
is shown in the TCP based outgoing traffic due to TCP
acknowledgments and timeouts.

When migrating an incoming network-intensive VM, the
iPerf server runs inside the migrating VM and the iPerf client
runs on an external machine in the same cluster. Figures 13
and 14 give the network bandwidth of incoming network
intensive applications for TCP and UDP connections, respec-
tively. For the TCP protocol, although PostCopyFT serves
incoming network packets, the acknowledgment packets are
being buffered as they are considered as outgoing network
packet. Thus bandwidth fluctuations are seen in the incoming
TCP network traffic workloads due to the acknowledgment
packets. Compared to the periodic checkpointing mechanism,
the event-base checkpointing mechanism shows much higher
bandwidth.
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Fig. 11. Outgoing network bandwidth of post-copy, PostCopyFT with periodic
checkpointing, and PostCopyFT with event-based checkpointing, when the
migrating VM generates outgoing TCP traffic.
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Fig. 12. Outgoing network bandwidth of post-copy, PostCopyFT with periodic
checkpointing, and PostCopyFT with event-based checkpointing, when the
migrating VM generates outgoing UDP traffic.
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Fig. 13. Incoming network bandwidth of post-copy, PostCopyFT with
periodic checkpointing, and PostCopyFT with event-based checkpointing,
when the migrating VM receives incoming TCP traffic.

E. Failover Time

Upon detecting a failure during the migration of a VM,
the time taken to recover the VM from the latest available
committed state is called the failover time. Figure 15 shows the
failover time when migrating a 5GB memory-write intensive
VM using PostCopyFT. We varied the number of checkpointed
pages and captured the time taken to restore the VM on the
source host. The figure shows that, the failover time increases
linearly when the size of the checkpoint increases.

VI. RELATED WORK

This section reviews the related literature on VM fault-
tolerance. In contrast to existing techniques which aim to
recover a VM after failure during normal execution, Post-
CopyFT is the first approach to address the problem of VM
recovery after failure during live migration.

Checkpointing based fault-tolerance: Almost all virtual-
ization platforms [2], [22], [37] support VM checkpointing
and restoration. In checkpointing, the memory state of a VM
is captured and preserved locally or remotely. During a failure
situation, the VM is rolled back/restored to the previously
checkpointed state. However, after the restoration, the VM
states between the last checkpoint and the time when the
failure occurs are lost. Checkpointing can be done at either
the application level [25], [41] or the whole system level [7],
[10], [13], [19], [20], [23], [24], [27], [29], [32]. Several oper-
ating systems [1], [28], [31], [33] were developed to support
process-level migration. The main challenge in process level
migration for fault tolerance is that the migrated process leaves
residual dependencies in the source machine and the solutions
for high availability process level checkpoint/restoration have
to deal with such dependencies. Compared to the application
specific checkpointing schemes, whole system checkpoints
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Fig. 14. Incoming network bandwidth of post-copy, PostCopyFT with
periodic checkpointing, and PostCopyFT with event-based checkpointing,
when the migrating VM receives incoming UDP traffic.

Fig. 15. The time taken for recovering a memory write-intensive VM from
checkpoints with different sizes.

provide more reliability and higher availability with signifi-
cantly higher cost.

The traditional way of achieving fault tolerance via check-
pointing is an active-passive approach [7], [27], [39] where
the backup node gets the control once the primary VM failed.
However, the active-passive approaches suffer from extra
network latency due to outgoing network packet buffering,
large memory state transfer, and high checkpointing frequency.
To provide seamless failover restoration, active-active repli-
cations [10], [40] are introduced in which the primary and
backup VMs execute in parallel. These systems compare the
responses to client requests to decide when the checkpoint
should be triggered. If the output of both primary and backup
VMs diverges, committing of network responses is withheld
until the primary VM’s memory state is synchronized with the
backup VM. Network buffering latency is common for both
active-passive and active-active approaches. Instead of buffer-
ing external events (i.e, network packets), Kemari [36] initiates
the checkpoint of the primary VM when the hypervisor starts
duplicating the external events to the backup VM. None of the
above approaches applied periodic or event-based replication
fault tolerance solutions to handle destination failure during
live migration.

Logging and replay based fault-tolerance: Logging mech-
anisms can replay events at runtime to ensure the identical
backup of the primary VM. Bressoud et al. [5] proposed
a hypervisor-based fault tolerance approach in which the
hypervisor logs each instruction level operation on the primary

VM and replayed the logged state on the secondary VM.
Although logging can be done in the virtual machine monitor
(VMM) [5], [11], [21], [29], deterministic replay relies on the
architecture of the VMM and cannot be easily viable to multi-
core CPUs. Approaches such as Flight Data Recorder [42]
sniff cache traffic to infer how shared memory is accessed.
Dunlap [12] used CREW (concurrent read, exclusive write)
protocol on shared memory to capture the access order.
However, deterministic replay mechanisms work with high
overhead.

Live migration as a VM fault-tolerance technique:
Techniques have also been developed to quickly evict VMs
from the source to the destination machine upon imminent
failure of the source machine [8], [9], [14], [15]. However,
none of them protect the VM against the failure of the live
migration itself.

VII. CONCLUSION

In this paper, we addressed the problem of recovering a
virtual machine when post-copy live migration fails due to des-
tination or network failure. We proposed a reverse incremental
checkpointing solution, called PostCopyFT, which proceeds
concurrently with traditional post-copy migration and transfers
incremental changes to a VM’s memory and execution state
from the destination back to the source, either periodically
or upon external I/O events. Upon network or destination
failure, PostCopyFT recovers the VM on the source node
from the latest consistent checkpoint. Our implementation
of PostCopyFT in the KVM/QEMU platform yields similar
total migration time compared to the traditional post-copy live
migration with low impact on application performance.
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Fig. 1. The architecture of PostCopyFT.


