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Abstract
Hypervisors are increasingly complex and must be often
updated for applying security patches, bug fixes, and feature
upgrades. However, in a virtualized cloud infrastructure, up-
dates to an operational hypervisor can be highly disruptive.
Before being updated, virtual machines (VMs) running on
a hypervisor must be either migrated away or shut down,
resulting in downtime, performance loss, and network over-
head. We present a new technique, called HyperFresh, to
transparently replace a hypervisor with a new updated in-
stance without disrupting any running VMs. A thin shim
layer, called the hyperplexor, performs live hypervisor re-
placement by remapping guest memory to a new updated
hypervisor on the same machine. The hyperplexor lever-
ages nested virtualization for hypervisor replacement while
minimizing nesting overheads during normal execution. We
present a prototype implementation of the hyperplexor on
the KVM/QEMU platform that can perform live hypervi-
sor replacement within 10ms. We also demonstrate how a
hyperplexor-based approach can used for sub-second reloca-
tion of containers for live OS replacement.

CCS Concepts • Software and its engineering → Vir-
tual machines; Operating systems.

Keywords Hypervisor, Virtualization, Container, Live Mi-
gration
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1 Introduction
Virtualization-based server consolidation is a common prac-
tice in today’s cloud data centers [2, 24, 43]. Hypervisors host
multiple virtual machines (VMs), or guests, on a single phys-
ical host to improve resource utilization and achieve agility
in resource provisioning for cloud applications [3, 5–7, 50].
Hypervisors must be often updated or replaced for various
purposes, such as for applying security/bug fixes [23, 41]
adding new features [15, 25], or simply for software reju-
venation [40] to reset the effects of any unknown memory
leaks or other latent bugs.
Updating a hypervisor usually requires a system reboot,

especially in the cases of system failures and software aging.
Live patching [61] can be used to perform some of these
updates without rebooting, but it relies greatly on the old
hypervisor being patched, which can be buggy and unsta-
ble. To eliminate the need for a system reboot and mitigate
service disruption, another approach is to live migrate the
VMs from the current host to another host that runs a clean
and updated hypervisor. Though widely used, live migrat-
ing [18, 27] tens or hundreds of VMs from one physical host
to another, i.e. inter-host live migration, can lead to signifi-
cant service disruption, long total migration time, and large
migration-triggered network traffic, which can also affect
other unrelated VMs.
In this paper, we present HyperFresh, a faster and less

disruptive approach to live hypervisor replacement which
transparently and quickly replaces an old hypervisor with a
new instance on the same host while minimizing impact on
running VMs. Using nested virtualization [12], a lightweight
shim layer, called hyperplexor, runs beneath the traditional
full-fledged hypervisor on which VMs run. The new replace-
ment hypervisor is instantiated as a guest atop the hyper-
plexor. Next, the states of all VMs are transferred from the
old hypervisor to the replacement hypervisor via intra-host
live VM migration.

https://doi.org/10.1145/3313808.3313821
https://doi.org/10.1145/3313808.3313821
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However, two major challenges must be tackled with this
approach. First, existing live migration techniques [18, 27]
incur significant memory copying overhead, even for intra-
host VM transfers. Secondly, nested virtualization can de-
grade a VM’s performance during normal execution of VMs
when no hypervisor replacement is being performed. Hyper-
Fresh addresses these two challenges as follows.

First, instead of copying a VM’s memory, the hyperplexor
relocates the ownership of the VM’s memory pages from
the old hypervisor to the replacement hypervisor. The hy-
perplexor records the mappings of the VM’s guest-physical
and host-physical address space from the old hypervisor and
uses them to reconstruct the VM’s memory mappings on
the replacement hypervisor. Most of the remapping opera-
tions are performed out of the critical path of the VM state
transfer, leading to a very low hypervisor replacement time
of around 10ms, irrespective of the size of the VMs being
relocated. In contrast, traditional intra-host VM migration,
involving memory copying, can take several seconds. For the
same reason, HyperFresh also scales well when remapping
multiple VMs to the replacement hypervisor.
HyperFresh addresses the second challenge of nesting

overhead during normal execution as follows. In compar-
ison with the traditional single-level virtualization setup,
where the hypervisor directly controls the hardware, nested
virtualization introduces additional overheads, especially
for I/O virtualization. Hence HyperFresh includes a number
of optimizations to minimize nesting overheads, allowing
the hypervisor and its VMs to execute mostly without hy-
perplexor intervention during normal operations. Specifi-
cally, HyperFresh uses direct device assignment (VT-d) for
emulation-free I/O path to the hypervisor, dedicates physical
CPUs to reduce scheduling overheads for the hypervisor,
reduces CPU utilization on hyperplexor by disabling the
polling of hypervisor VCPUs, and eliminates VM Exits due
to external device interrupts.

Finally, as a lightweight alternative to VMs, containers [21,
52–54] can be used to consolidate multiple processes. We
demonstrate how the hyperplexor-based approach can be
used for live relocation of containers to support replacing the
underlying OS. Specifically, we demonstrate sub-second live
relocation of a container from an old OS to a replacement OS
by combining hyperplexor-based memory remapping mech-
anism and a well-known process migration tool, CRIU [58].
In this case, the hyperplexor runs as a thin shim layer (hy-
pervisor) beneath two low-overhead VMs which run the old
OS and the replacement OS.
Our prior workshop paper [8] presented preliminary re-

sults for HyperFresh with hypervisor replacement time of
around 100ms. This paper presents a comprehensive design
and implementation of HyperFresh with lower replacement
time of around 10ms, support for relocating multiple VMs,
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Figure 1. Hypervisor replacement in (a) Inter-host (non-
nested) and (b) Intra-host (nested) setting.
optimizations to reduce nesting overheads, and live con-
tainer relocation for OS replacement. In the rest of this pa-
per, we first demonstrate the quantitative overheads of VM
migration-based hypervisor replacement, followed by the
HyperFresh design, implementation, and evaluation, and
finally discussion of related work and conclusions.

2 Problem Demonstration
In this section, we examine the performance of traditional
live migration for hypervisor replacement to motivate the
need for a faster remapping-based mechanism.

2.1 Using Pre-Copy For Hypervisor Replacement

Inter-Host Live VMMigration: To refresh a hypervisor, a
traditional approach is to livemigrate VMs from their current
host to another host (or hosts) having an updated hypervisor.
As shown in Figure 1(a), we can leverage the state-of-the-art
pre-copy live VM migration technique. Pre-copy VM live
migration consists of three major phases: iterative memory
pre-copy rounds, stop-and-copy, and resumption. During
the memory pre-copy phase, the first iteration transfers all
memory pages over the network to the destination, while
the VM continues to execute concurrently. In the subsequent
iterations, only the dirtied pages are transferred. After a
certain round of iterations, determined by a convergence
criteria, the stop-and-copy phase is initiated, during which
the VM is paused at the source and any remaining dirty pages,
VCPUs, and I/O state are transferred to the destination VM.
Finally, the VM is resumed at the destination.
Intra-Host Live VM Migration: As Figure 1(b) shows,
with nested virtualization, a base hyperplexor at layer-0 (L0)
can run deprivileged hypervisors at layer-1 (L1), which con-
trol VMs running at layer-2 (L2). At hypervisor replacement
time, the hyperplexor can boot a new replacement hypervi-
sor at L1, and use intra-host live VM migration to transfer
VMs from the old hypervisor to the replacement hypervisor.

2.2 Improving the Default Pre-Copy in KVM/QEMU
We observed two performance problems when using the
default pre-copy implementation of KVM/QEMU. So that
we can compare our remapping approach with the best case
performance of pre-copy implementation, we modified the
pre-copy implementation as described below.



Fast and Live Hypervisor Replacement VEE ’19, April 14, 2019, Providence, RI, USA

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5

R
ep

la
ce

m
en

t 
T

im
e 

(m
s)

Guest Memory (GB)

Inter-host
Intra-host non-nested

Intra-host nested (pv-pv)
Intra-host nested (pt-pv)

(a) Idle guest

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1  2  3  4  5

R
ep

la
ce

m
en

t 
T

im
e 

(m
s)

Guest Memory (GB)

Inter-host
Intra-host non-nested

Intra-host nested (pv-pv)
Intra-host nested (pt-pv)

(b) Busy guest

Figure 2. Comparisons of hypervisor replacement time on the same or different hosts with nested or non-nested setups.

First, we observed that the total live migration time for
a 1 GB idle VM between two physical machines connected
via a 40 Gbps network link was 12 seconds, which was way
more than what we expected. Upon investigation, we found
that, by default, QEMU limits the migration bandwidth to
256 Mbps. We modified QEMU to disable this rate limiting
mechanism, so that the VM’s memory can be transferred at
full network bandwidth.
Secondly, we observed that when the VM is running a

write-intensive workload then the pre-copy iterations never
converge to the stop-and-copy phase. This was found to
be due to an inaccurate convergence criteria based on the
VM’s page dirtying rate (the rate at which a VM writes to
its memory pages), which not only breaks down for write-
intensive VMs, but also misses opportunities for initiating
an earlier stop-and-copy phase when the number of dirtied
pages in the the last iteration could be low.

To ensure that the pre-copy rounds converge successfully,
we made two additional changes to QEMU’s pre-copy im-
plementation. We placed a hard limit of 20 rounds on the
maximum number of pre-copy iterations, after which the
stop-and-copy phase is initiated. We also simplified QEMU’s
default convergence criteria by triggering the stop-and-copy
phase when the number of dirty pages from the prior round
is less than 5,000 pages. The latter change yields a low down-
time of less than 5 ms.

2.3 Pre-Copy Analysis for Hypervisor Replacement
With the above optimizations to QEMU’s default pre-copy
live migration, we analyzed the total migration time, which
also represents the time taken for hypervisor replacement
operation. We analyzed the following four configurations:
• Inter-host: where a VM is migrated between two physi-
cal machines, as in Figure 1a. The source machine runs
the old hypervisor and the destination machine runs the
new hypervisor.

• Intra-host nested (pv-pv): where the VM is migrated
between two co-located nested hypervisors, as in Figure 1b.
The source L1 runs the old hypervisor and the destination
L1 runs the new hypervisor. The network interfaces of
both L1 hypervisors and their L2 VMs are configured as
para-virtual vhost-net devices [57].
• Intra-host nested (pt-pv): Same configuration as the
above case, except that the both L1 hypervisors are con-
figured to use pass-through network interfaces via virtual
functions configured in the physical NIC.
• Intra-host non-nested: This is a baseline (and some-
what unrealistic) migration scenario where a single-level
non-nested VM is migrated within the same host into
another VM instance. This case helps us measure the
intra-host live migration performance if there were no
overheads due to nested virtualization and network in-
terfaces (since source and destination QEMU processes
communicate via the loopback device).
The experiments were conducted using machines having

10-core Intel-Xeon 2.2 GHz processors with 32GB memory
and 40 Gbps Mellanox ConnectX-3 Pro network interface.
Table 1 in Section 4.1 lists the memory and processor config-
urations in L0, L1, and L2 layers for these cases.
Figure 2a plots the total migration time for an idle VM

when the VM’s memory size is increased from 1 GB to 4 GB.
Figure 2b plots the total migration time for a busy VM where
the VM runs a write-intensive workload in the VM. Specifi-
cally, the write-intensive workload allocates a certain size
of memory region and writes a few bytes to each allocated
page at a controllable dirtying rate. The allocated memory
size is 80% of the VMs memory, from 800 MB for a 1 GB VM
to 3,200 MB for a 4 GB VM. The dirtying rate is set to 50,000
pages per second.
First we observe that in all the cases, as the VM size in-

creases, the total migration time increases, because more
memory pages must be transferred over a TCP connection
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for larger VMs. The migration times range from as low as
several hundred milliseconds for idle VMs to more than 3 sec-
onds for busy write-intensive VMs. Since pre-copy retrans-
mits dirtied pages from previous iterations, write-intensive
VMs take longer to migrate.

The second surprising observation was that the Inter-host
configuration for migrating a non-nested VM was faster
than the Intra-host configuration for migrating a nested
VM. Replacing the para-virtual vhost-net interface for the
L1 hypervisor in the Intra-host nested (pv-pv) configuration
with a pass-through interface in the Intra-host nested (pt-pv)
configuration did not produce any noticeable reduction in
total migration time. To verify that this worse performance
was caused by nesting overheads, we carried out the Intra-
host non-nested live migration described above. As expected,
this fourth configuration performed better than the Inter-
host configuration, confirming that nesting overheads indeed
adversely affect intra-host VM migration.
Nevertheless, even in the ideal (though unrealistic) case

represented by the Intra-host non-nested setting, traditional
pre-copy migration takes between 0.4 seconds (for idle VM
case) to more than 1.19 seconds (for busy VM case) to mi-
grate a single 4 GB busy VM. When multiple VMs must be
relocated for hypervisor replacement, these times are bound
to increase. We consider this performance unsatisfactory for
simply relocating VMs within the same host.

In summary, using intra-host pre-copy live migration for
hypervisor replacement is expensive in terms of total mi-
gration time, network overheads, and its affect on VM’s
performance. This motivates us to develop a faster hyper-
visor replacement technique based on memory remapping
that does not involve copying of VM’s memory pages within
the same host. In the following, we present our approach
and show that our memory remapping-based technique can
achieve sub-10ms live hypervisor replacement times.

3 HyperFresh
The key idea behind HyperFresh is as follows: Instead of
copying memory of VMs from the old hypervisor to the
co-located replacement hypervisor, HyperFresh transfers
the ownership of VMs’ physical memory pages via page ta-
ble remapping. Such memory ownership relocation is fast
and leads to sub-10 ms live hypervisor replacement. Further,
HyperFresh includes optimizations to mitigate nesting over-
head during normal execution of VMs. We first introduce
memory translation under nested virtualization, followed by
hyperplexor-based hypervisor switching, and finally opti-
mizations to mitigate nesting overheads.

3.1 Memory Translation for Nested Virtualization
In native execution mode (without virtualization), a page
table stores the mappings between the virtual addresses (VA)
of a process to its physical addresses (PA) where memory

G1 G2
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Figure 3. Memory translations for hypervisor replacement.
content actually resides. When a VA is accessed by a process,
the hardware memory management unit (MMU) uses the
page table to translate the VA to its PA.

In single-level virtualization, an additional level of address
translation is added by the hypervisor for virtualizing the
memory translations for VMs. The page table of a process
running on a VM stores the mappings from the guest virtual
addresses (GVA) of a process to the guest physical addresses
(GPA) — the virtualized view of memory seen by the VM. The
hypervisor uses another page table, the extended page table
(EPT), to map GPA to its physical addresses (PA). As with
traditional page tables, an EPT is constructed incrementally
upon page faults. As a VM tries to access previously unal-
located GPA, EPT violations are generated, like page faults
for a process. These faults are processed by the hypervisor
which allocates a new physical page for the faulting GPA.

In nested virtualization, as shown in Figure 3, three lev-
els of translations are needed. A process’s virtual address
is translated to the GPA of the layer-2 VM (labeled L2PA).
An L2PA is translated to the guest physical address of the
L1 hypervisor (L1PA) using a virtual EPT for the layer-2 VM
maintained by the L1 hypervisor. Finally, the L1PA is trans-
lated to the physical address of the host (PA) using the L1
hypervisor’s EPT maintained by the hyperplexor at L0. Since,
the MMU can translate only two levels of memory mappings,
the hyperplexor at L0 combines the virtual EPT at L1 and
the EPT at L0 to construct a Shadow EPT for every L2 VM.
The MMU uses the process page table in the L2 VM and the
shadow EPT at L0 to translate a process VA to its PA. The
shadow EPT is updated whenever the corresponding virtual
EPT in L1 and/or the EPT in L0 are updated.

3.2 Hypervisor Replacement Overview
We now present an overview of the hypervisor replacement
mechanism followed by low-level details. Consider a VM that
initially runs on the old L1 hypervisor which in turn runs
on the thin L0 hyperplexor. To replace the old hypervisor,
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the hyperplexor creates a new replacement L1 hypervisor
(with pre-installed updates) and transfers the ownership of
all L2 VMs’ physical pages to this replacement hypervisor.
The page mappings from an L2 VM’s guest physical ad-

dress (L2PA) to the physical memory (PA) are available in
the shadow EPT of the L2 VM. Ideally, the hyperplexor could
accomplish the L2 VM’s relocation simply by reusing the
shadow EPT, albeit under the replacement hypervisor’s con-
trol. However, since the shadow EPT is the result of com-
bining a nested VM’s virtual EPT in L1 and L1’s own EPT
in L0, these two intermediate mappings must be accurately
reconstructed in the new address translation path via the
replacement hypervisor.

To accomplish this reconstruction, the replacement hyper-
visor must coordinate with the hyperplexor. It does so by
preparing a skeletal L2 VM to receive each incoming L2 VM
and reserves unallocated L1 page frame numbers in its guest-
physical address space (L1PA) where the incoming VM’s
pages will be mapped. The replacement hypervisor then
communicates the identity of these reserved page frames in
L1PA to the hyperplexor (via a hypercall), so that the hyper-
plexor can map these reserved page frames to the incoming
L2 VM’s existing physical pages. Note that the reserved L1
page frames in the replacement hypervisor may not be the
same as that in old hypervisor as shown in Figure 3.
The transfer of execution control is then performed as

follows. The L2 VM’s execution is paused at the old hypervi-
sor and its execution state (consisting of all VCPU and I/O
states) are transferred to the replacement hypervisor’s con-
trol, which then resumes execution of the L2 VM. This switch
over operation can be accomplished quickly (sub-10ms in our
prototype) since no memory content is copied during this
step. Finally, once the control of the L2 VM is transferred to
the replacement hypervisor, the old hypervisor can unmap
the L2 VM’s memory from its address space and be safely
deprovisioned.
As the relocated L2 VM begins execution on the replace-

ment hypervisor, it generates page faults against its memory
accesses. The entries in the new intermediate mapping tables
(the virtual EPT and replacement hypervisor’s L1 EPT) are
populated on-demand to reflect the original physical pages
used by the L2 VM under the old hypervisor. In other words,
the shadow EPT reconstructed for the relocated VM ends up
being identical to its erstwhile shadow EPT used under the
old hypervisor, while the new intermediate mapping tables
are correspondingly adjusted. We nest describe low-level
details of HyperFresh implementation.

3.3 Implementation Details
We have developed a prototype of HyperFresh using the
KVM/QEMU virtualization platforms with Linux kernel ver-
sion 4.13.0 and QEMU version 2.9.0. The VM runs unmodified
Linux kernel version 4.13.0 and uses para-virtual I/O devices.
Our solution was implemented by modifying QEMU’s live

migration mechanism, besides modifications to KVM to im-
plement page remappings described above.
KVM is a linux kernel module which is responsible for

core functionalities such as memory management. QEMU
is a user space process that emulates its I/O operations and
manages VM control operations, including live migration
and checkpointing. A part of QEMU’s virtual address space
is assigned to the virtual machine as guest address space.
QEMU process sets up the VCPU threads and virtual I/O
devices for the guest. QEMU interacts with KVM hypervisor
through ioctl()s. The execution of any privileged instruction
by the guest causes a trap to the KVM hypervisor. Traps due
to EPT faults are handled by KVM itself whereas the traps
due to I/O are forwarded to QEMU.
Different from QEMU’s live migration, HyperFresh’s hy-

pervisor replacement operation only involves the transfer
of VCPU and I/O state of the VM. Since the relocation of L2
VM’s memory pages is performed out of the critical path of
hypervisor replacement, we modified QEMU’s live migration
to disable dirty page tracking, transfer of page contents via
pre-copy iterations, and also the transfer of residual dirty
pages during the stop-and-copy phase of live migration. The
VCPUs are paused only during the stop-and-copy phase
which results in very low hypervisor replacement time.

The HyperFresh Table: In KVM’s current implemen-
tation, the L2 VM’s shadow EPT cannot be easily trans-
ferred from the old hypervisor to the replacement hyper-
visor. Hence, our hyperplexor implementation constructs a
parallel table, which we call the HyperFresh table, to store
a copy of the L2PA-to-physical page mapping information
contained in the shadow EPT. This HyperFresh table is used
for reconstructing the same L2PA-to-PA page mappings for
the relocated VM upon EPT violations.

To construct the HyperFresh table, the hyperplexor needs
a list of L2PA-to-L1PA page mappings of the VM from the old
hypervisor, using the virtual EPT table. The old hypervisor
invokes a hypercall_put hypercall multiple times to pass
a complete list of L2PA-to-L1PA page mappings of the VM
to the hyperplexor. For each received L2-to-L1 page map-
ping, the hyperplexor translates the L1 page number to the
physical page number using the EPT table at L0, and inserts
the corresponding L2PA-to-physical page mapping into the
HyperFresh table.
To relocate the ownership of a L2 VM’s memory to the

replacement hypervisor, the hyperplexor needs the list of
L2PA-to-L1PA page mappings of the newly created skeletal
VM from the replacement hypervisor. The replacement hy-
pervisor invokes another hypercall_map hypercall multiple
times to pass these mappings to the hyperplexor. For each
received L2PA-to-L1PA page mapping, the hyperplexor (1)
looks up the HyperFresh table to find the L2PA-to-PA map-
ping with the L2 page number as the key; and (2) installs the
L1PA-to-PA page mapping in the replacement hypervisor’s
EPT table. More specifically, HyperFresh translates each L1



VEE ’19, April 14, 2019, Providence, RI, USA S. Doddamani, P. Sinha, H. Lu, T. Cheng, H. Bagdi and K. Gopalan

guest frame number to its host virtual address (HVA), installs
the HVA-to-PA page mapping in the page table of the VM’s
QEMU process, and at last invalidates the corresponding
entry in the EPT table, which is reconstructed later upon
an EPT fault. Also, to clear any pre-existing GFN mappings
of the replacement hypervisor, the hyperplexor flushes the
entries in the TLB before resuming the relocated VM.

3.4 Reducing Nesting Overheads
In comparison with the traditional single-level virtualization
setup, where the hypervisor directly controls the hardware,
nested virtualization can introduce additional emulation
overheads. We apply several optimizations to reduce nesting
overheads, provide the hypervisor with enough resources,
and reduce the hyperplexor’s footprint during normal exe-
cution. the These optimizations are optional, not essential,
for the replacement mechanism described earlier.
SR-IOV NICs: To mitigate I/O emulation overheads, Hy-
perFresh uses direct device assignment of network interface
cards (NIC) to the hypervisor. Existing virtualization tech-
niques (e.g., KVM [34]) support the full virtualization mode
through device emulation [55] and para-virtualization using
virtio drivers [10, 49] in VMs. For example, QEMU [11] emu-
lates I/O devices requiring no modifications to VMs. When
VMs access the devices, the I/O instructions are trapped
into hypervisor leading to a number of VM/host context
switches, resulting in lower performance of VMs. The para-
virtualized devices offer better performance compared to
device emulation, as the modified drivers in VMs avoid ex-
cessive VM/host switches for the I/O workloads. With Intel’s
VT-d [1], direct device assignment offers improved perfor-
mance, as VMs directly interact with the devices bypassing
the hypervisor. Further, SR-IOV [19] enables a single net-
work device to present itself as multiple virtual NICs to VMs
through virtual functions. Using a virtual function, a VM
directly interacts with the network device — with Intel’s
hardware support, VMs can directly access device memory
through IOMMU which converts VMs physical addresses to
host physical addresses.

We use virtual functions to achieve network performance
in nested guest to match the performance of a single-level
guest and minimize the CPU Utilization in the hyperplexor.
The VFIO [59] driver supports direct device assignment to a
virtual machine. As shown in Figure 4 the old and the replace-
ment hypervisors are each assigned one virtual function. The
guest running on the hypervisor uses para-virtualized driver
to run the I/O workloads.
Posted Interrupts: When an external interrupt arrives,
the CPU switches from non-root mode to root mode (VM
Exit) and transfers the control to the hypervisor. Increase in
number of external interrupts causes increase in VM Exits.
With Intel’s VT-d posted interrupt support the external inter-
rupts are delivered to guest without hypervisor intervention.

HYPERPLEXOR 

HYPERVISOR (L1b) HYPERVISOR (L1a) 

GUEST 

Hardware 
NICVIRTUAL  

FUNCTION 1

PHYSICAL 
DRIVER

PHYSICAL 
DRIVER

VFIO VFIO

VHOST-NET

TAP

VHOST-NET

TAP

VIRTIO

VIRTUAL  
FUNCTION 2

Figure 4. Reducing nesting overheads of hyperplexor using
direct-device assignment to hypervisor.
We enable posted interrupt feature on the hyperplexor and
deliver interrupts from the NIC directly to the hypervisor
without causing exits.
Disabling HLT Exit Polling: Although a directly assigned
network device to a VM gives better performance, the CPU
utilization on the host is high due to the idle polling of VC-
PUs. When the VM is idle, QEMU halts the idle VCPUs by
executing a HLT instruction which triggers a VM exit. When
the work is available for the VCPU, it has to be woken up
to execute the new work. This transition from idle to ready
state is costly as it involves context switch and hinders the
performance of the VM. To avoid too many transitions, be-
fore executing the HLT instruction the VCPU polls for the
specified amount of time to check if there is any additional
work to be executed. This idle polling of VCPUs reduces the
number of VM exits but increases CPU utilization on host. To
reduce CPU utilization on host, we disable polling of VCPUs
before executing HLT instruction.
Dedicated Cores: All system processes, including QEMU,
in the hyperplexor are pinned to run on two CPU cores
whereas the hypervisor’s VCPUs run on dedicated cores.
We enable the isolcpus feature in Linux to isolate and pin
hypervisor VCPUs from hyperplexor’s system processes.
Hyperplexor Memory Footprint: We configured the hy-
perplexor with only essential packages, device drivers and
services to reduce its memory usage (without a VM) to
around 90 MB. In comparison a default Ubuntu server takes
around 154 MB memory. With more careful configuration
tuning, the hyperplexor’s footprint could possibly be reduced
even further. The userspace processes and services that are
not necessary to run the L1 hypervisor with direct-device
assignment were identified and removed.

3.5 HyperFresh for OS Replacement
Using containers to host applications becomes a common
usage scenario in today’s cloud [21, 51–54]. Under this sce-
nario, the act of OS replacement can be viewed as relocating
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Figure 5. Memory translations for OS replacement.
the state of all containers from the old VM with the old OS
to a new VM with the replacement OS. Again, we leverage
intra-host live migration to avoid inter-host communication.

Overview: As shown in Figure 5, the page table of a pro-
cess (belonging to a container) running in the VM stores
the mappings between the guest virtual addresses (GVA) of
the process and the guest physical addresses (GPA) of the
VM. The hypervisor uses the EPT to map GPA to physical
addresses (PA). For OS replacement, the hypervisor creates
a new VM with the replacement OS, and transfers the own-
ership of all the container’s pages to this new VM. Hyper-
Fresh constructs a per-process table, similar to that described
for hypervisor replacement, to store the virtual-to-physical
memory mappings of the container from old OS. These map-
pings are used by the new OS for reconstructing the memory
address space of the container during OS replacement. The
replacement process on the new VM first reconstructs all
the GVAs of the container. The new VM’s OS then allocates
corresponding GPAs and sets up the GVA-to-GPA page map-
pings in the page table of the container. Finally, the newVM’s
OS invokes a series of hypercalls to the hypervisor, which
installs the GPA-to-PA page mappings in the new VM’s EPT
table using the HyperFresh table.

Implementation: We implemented a container reloca-
tion prototype for OS replacement based on CRIU [58] —
a well-known checkpoint/restore tool implemented in the
user space. CRIU consists of two stages: checkpointing (on
the source VM) and restoration (on the destination VM). In
the checkpointing phase, on the source VM (with the old
OS) HyperFresh’s collects all the state of a container and its
processes (such as file descriptors, memory maps, registers,
namespaces, cgroups, etc) except for the memory content
and builds the HyperFresh table. To build the HyperFresh
table for OS replacement, a guest kernel module invokes mul-
tiple hypercall_put hypercalls to pass a list of GVA-to-GPA
page mappings to the hypervisor. For each received GVA-
to-GPA mapping, the hypervisor translates GPA to PA (i.e.,

Table 1. Setup to compare hypervisor replacement time.

L0 L1 L2
Inter-Host 1GB, 1–4CPUs - -
Intra-host Non-Nested 8GB, 4CPUs - 1GB, 1–4VCPUs
Intra-host Nested 32GB, 10CPUs 8GB, 4VCPUs 1GB, 1–4VCPUs
HyperFresh 32GB, 10CPUs 8GB, 4VCPUs 1GB, 1–4VCPUs

using the VM’s EPT), and stores the corresponding GVA-to-
PA page mapping in the HyperFresh table. In the restoration
phase on the destination VM (with the replacement OS),
HyperFresh restores the execution state, relocates the mem-
ory ownership, and resumes each process of the container,
while the source VM unmaps the pages of each relocated
process from its address space. This process is repeated until
all processes of a container are moved to the destination VM.
Restoring the address space of a container on the new VM
requires reconstructing the GVAs, GPAs, and their mappings.
Given the GVA-to-GPA page mappings of the container, the
new VM’s kernel invokes multiple hypercall_map hyper-
calls to pass a list of GVA-to-GPA mappings of the container
to the hypervisor. For each received GVA-to-GPA mapping,
the hypervisor looks up the HyperFresh table to find the
GVA-to-PA mapping with GVA as the key and installs the
GPA-to-PA mapping in the EPT page table of the new VM.

4 Evaluation
This section evaluates our HyperFresh prototype in terms of
replacement times, performance impact on applications be-
fore, during and after hypervisor replacement, and the perfor-
mance of live container relocation. We run our experiments
on machines equipped with a 10-core 2.2 GHz Intel Xeon
Broadwell CPU, 32 GB memory and one 40 Gbps Mellanox
ConnectX-3 Pro network interface. All experimental results
are averaged over five or more runs; standard deviations
range between 0 to 2% across all experiments.
4.1 Hypervisor Replacement Time
We compare the hypervisor replacement time under Hyper-
Fresh with the four cases based on the optimized pre-copy
migration which were described earlier in Section 2.3. Ta-
ble 1 lists the memory and processor configurations in L0,
L1, and L2 layers for these cases.
Single VM: First, we use a single idle VM and vary its mem-
ory sizes from 1 GB to 4 GB. Figure 6 shows that the total
replacement time under the inter-host case is around 0.35
seconds for 1 GB memory and 0.6 seconds for 4 GB memory.
Under the intra-host nested cases (both pv-pv and pt-pv),
the replacement time increases to around 0.5 seconds for 1
GB memory, and 1.17 seconds for 4 GB memory. In contrast,
the total hypervisor replacement time under HyperFresh is
very low — 10 ms. Further, the replacement time remains
constant as the VM’s memory size increases. It is because, in
HyperFresh, the memory is remapped between the L1 hyper-
visors and such operations are performed out of the critical
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Figure 6. Hypervisor replacement time: one idle VM with
varying memory sizes.
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Figure 7. Hypervisor replacement time: one busy VM with
varying memory sizes.
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Figure 8. Hypervisor replacement time: multiple idle VMs.
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Figure 9.Hypervisor replacement time: multiple busy VMs.

path of the VM state transfer; the replacement time only
comprises of the time to transfer the VCPU and I/O device
state information, which is fairly constant. However, under
both the inter-host and intra-host cases, transferring the
memory pages using TCP connections accounts for higher
total migration time and thus higher replacement time.

Next, we use a busy VM with varying memory sizes. The
busy VM runs a synthetic “writable working set” benchmark
which writes to memory at a fixed rate of 5,000 pages per
second. In Figure 7, under all pre-copy live migration cases
the replacement time increases as the memory size of the VM
increases. The replacement time is higher than that under the
idle VM, because dirtied pages of the busy VM are transferred
in multiple rounds. With HyperFresh, the replacement time
remains constant around 10ms irrespective of the memory
dirtying rate or guest memory sizes.
Multiple VMs: We also measure the hypervisor replace-
ment time by relocatingmultiple VMs from an old hypervisor
to a replacement hypervisor. We vary the VM number from
1 to 4. Each VM is configured with 1 GB memory; all the
VMs start the migration at around the same time. We con-
sider the following two cases: (1) with all VMs being idle

and (2) with all VMs being busy dirtying 5,000 pages per sec-
ond. In Figure 8, with all VMs being idle, it takes 0.3 seconds
to migrate 1 VM and 0.5 seconds to migrate 4 VMs under
inter-host live migration. The migration time increases to 0.5
seconds for migrating 1 VM and 0.8 seconds for 4 VMs under
intra-host nested live migration (for both pv-pv and pt-pv
setups). In Figure 9, with all busy VMs, it takes 0.7 seconds
to migrate 1 VM and 1.27 seconds for 4 VMs under inter-host
live migration. Under intra-host nested live migration (for
both pv-pv and pt-pv setups), the migration time increases
to 1 second for 1 VM and 1.75 seconds for 4 VMs. With Hy-
perFresh, the time to replace the hypervisor remains around
10 ms with either idle or busy VMs. The replacement time
does not increase as the number of VMs increases, because
the VMs’ memory is remapped and only the VCPU and I/O
device states are transferred during hypervisor replacement.
4.2 Performance During Hypervisor Replacement
We measure the application performance during hypervisor
replacement between HyperFresh and the intra-host nested
(pt-pv) case. We use a CPU-intensive benchmark, Quick-
sort, which first allocates 1 GB memory. Then each it iter-
atively takes different 200 KB (50 page) regions from the
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Figure 10. Quicksort performance over multiple hypervisor replacements.

Table 2. Setup to compare nesting overhead reduction.

Hyperplexor Hypervisor Guest
Host 8GB, 2–4CPUs - -
Non-Nested 16GB, 8CPUs - 8GB, 2–4VCPUs
Nested 32GB, 10CPUs 16GB, 8VCPUs 8GB, 2–4VCPUs
HyperFresh 32GB, 10CPUs 16GB, 8VCPUs 8GB, 2–4VCPUs

Table 3. Benchmark Performance and CPU Utilization. BW:
Bandwidth, CPU: CPU Utilization, Exec: Execution time

iperf Kernbench Quicksort
BW

(Gbps)
CPU
(%)

Exec
(s)

CPU
(%)

Exec
(s)

CPU
(%)

Host 37.6 85.8 322.8 194.4 66.3 97.7
Non-nested 36.3 237.1 336.2 197.3 66.5 102.1
Nested 25.2 332 361.8 198.3 67.7 103
Hyperfresh 36.1 289.4 361.4 195.6 67.7 103.9

pre-allocated memory, writes random integers into it, and
sorts the integers. In Figure 10, we conduct 6 hypervisor
replacements over a 300-second time window for both Hy-
perFresh and the intra-host nested case. We measure the
number of QuickSort operations per second during both
regular execution and replacement.

In Figure 10(a), in the intra-host nested (pt-pv) case, there
is no significant performance degradation during pre-copy
iterations. However, the sharp performance dip is observed
during the stop-and-copy phase, during which the VM is
paused. In Figure 10(b), with HyperFresh, the performance
of QuickSort is not significantly affected during the stop-and-
copy phase. It is because, unlike the intra-host live migration
case, HyperFresh does not transfer any pages during the
stop-and-copy phase, leading to much shorter downtime and
hence less performance impact.

4.3 Nesting Overhead
To understand nesting overheads during normal execution
and the impact of our optimizations, we measure the per-
formance of various applications running on (a) the native
host (i.e., without virtualization); (b) a VM under non-nested
virtualization (with the para-virtualized driver); (c) an L2 VM
under nested virtualization (with the pt-pv configuration),
and (d) an L2 VM under HyperFresh with optimizations. The
configurations are listed in Table 2. Particularly, to conduct
fair comparisons among the above four cases, we ensure that
the host or VMs running applications are configured with
the same amount of resources — 2 VCPUs and 8 GB memory.

Iperf [29] is used to measure network performance. We
run the iperf client on the native host or VM under test, and
the iperf server on a separate host (with sufficient resources).
The iperf client and server are connected via a 40 Gbps net-
work. We measure the averaged TCP throughput over 100
seconds. Kernbench [35] uses multiple threads to repeat-
edly compile the Linux kernel source tree. In our experiments,
the kernel sources are loaded into an in-memory tmpfs file
system in the guest compiled for five iterations with two
threads, equal to the number of guest VCPUs. Quicksort is
a memory and CPU-intensive benchmark described earlier
in Section 4.2.

In Table 3, we observe that under HyperFresh (with opti-
mizations) the performance of iperf is higher than the default
nested case without optimizations, and very close to the non-
nested case (under single-level virtualization). Table 3 shows
the total CPU utilization as measured in the L0 layer. In the
default nested case, when the NIC card is assigned to the
hypervisor directly (i.e., pass-through), the CPU utilization
of the hyperplexor is expected to be small, as the network
packets are directly delivered to the L1 hypervisor. However,
Table 3 shows that the CPU utilization of the hyperplexor
(i.e., the system mode) in the default nested case is very high.
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It is because, the hyperplexor burns CPU cycles when it exe-
cutes HLT instruction as explained in Section 3.4. In contrast,
HyperFresh reduces the CPU utilization of the hyperplexor
by disabling event polling on HLT exits in L0, i.e. by disabling
halt_poll_ns. This allows than the L1 hypervisor to use
more CPU time to process network traffic than in the default
nested case, leading to higher iperf throughput.

We also observe that, although HyperFresh configuration
achieves comparable iperf throughout compared to the non-
nested guest case in Table 3, the CPU utilization by the
hyperplexor in HyperFresh is still significant, at around 90%.
This overhead can be attributed to the cost of processing
VM exits (with halt_poll_ns disabled in L0); frequent HLT
instructions executed by the guest and hypervisor VCPUs
must be trapped by the hyperplexor and either emulated (for
hypervisor) or forwarded to the L1 hypervisor (for guest). We
are investigating ways to eliminate this overhead possibly
by disabling HLT exits from hypervisor’s and/or the guest’s
VCPUs.

For in-memory Kernbench, nesting introduces a perfor-
mance reduction of around 7.6% over non-nested case due
to repeated VM Exits caused by guest invoking CPUID in-
struction, which must be trapped and emulated by L1 KVM.
For Quicksort, nesting introduces only a minor performance
reduction of 1.8% compared to non-nested case due to nested
page fault processing. HyperFresh optimizations do not sig-
nificantly reduce nesting overheads over the default nested
case for these two in-memory CPU-intensive workloads,
since our optimizations do not target VM Exits due to CPUID
instructions and nested page faults. This points to another
potential avenue for future optimization.
4.4 Performance After Hypervisor Replacement
After hypervisor replacement, the guest needs to update the
shadow EPT, EPT of L1 and virtual EPT on page faults. In con-
sequence, the performance of the applications in the guest
could be impacted as the guest populates the page tables on
demand. We run the experiments using in-memory Kern-
bench, SPEC CPU 2017 [13], Sysbench [36], and httperf [44]
to measure this performance impact, as summarized in Table
4. We configure the guest with 18 GB memory and 2 VCPUs;
the hypervisor with 20 GB memory and 5 VCPUs, and the
hyperplexor with 32 GB memory and 10 CPUs. We measure
the performance by running these benchmarks in the guest
before and right after hypervisor replacement.
First, Kernbench compiles the kernel with two threads,

equal to the number of the guest VCPUs. The kernel con-
sumes 8% of the guest memory. The compilation time in-
creases by 1.2% after hypervisor replacement. Further, the
CPU-intensive benchmarksmcf_s and bwaves_s are runwith
2 threads, cactuBSSN_r, omnetpp_r and xalancbmk_r with 1
thread from SPEC CPU 2017. The performance degrades by
3.05%, 0.81%, 2.71%, 1.23%, and 0.42% respectively at the new
hypervisor after replacement, depending on the size of the

memory used by the benchmark. Sysbench [36] generates an
OLTP workload to stress a MYSQL database. We measure the
read-only and read-write transactions per second by query-
ing an in-memory 4 GB MYSQL database in guest over a 300
seconds. We observe that the read-only and read-write trans-
action rates decrease by 0.74% and 4% respectively. Lastly,
httperf [44] is used to measure the performance of Apache
(version 2.4.18) web server running in the guest. We measure
the response latency of the requests sent from another client
host machine at the rate of 5,000 requests per second. We
observe that the difference in the absolute response latency
before and after replacement is small – 0.5 ms vs. 0.6 ms.

However, this post-relocation slowdown is not unique to
HyperFresh. Traditional pre-copy migration in KVM/QEMU
also lazily populates guest EPT entries on EPT faults after
migration. This could be addressed by pre-populating the
relevant EPT entries prior to resuming the guest.

4.5 Container Relocation
In this section, we evaluate the performance of container
relocation using HyperFresh to support live OS replacement.
we run the experiments on a server machine equipped with
two 6-core 2.1 GHz Intel Xeon CPUs and 128 GB memory.
We use KVM/QEMU to run source and destination VMs on
the same server, each with 4 VCPUs and 4 GB memory.
Replacement Time: We measure OS replacement time, as
time to relocate a container, under HyperFresh and com-
pare it with the pre-copy live migration approach imple-
mented upon Phaul [46]. We run a container with one pro-
cess which allocates 1 GB memory and then continuously
performs writes to the memory pages at varying rates from
0 GB/second to 1 GB/second. We measure the total OS re-
placement time and the container downtime.

Figure 11 shows that, with the pre-copy live migration
approach the total OS replacement time and downtime in-
crease as the memory dirty rate increases. For example, the
replacement time is around 2.5 seconds when the dirty rate
is 0, and increases to 10 seconds when the dirty rate is 1
GB/second. The downtime is around 1.7 seconds when the
dirty rate is 0, and increases to 2.7 seconds when the dirty
rate is 1 GB/second. In contrast, with HyperFresh, the total
replacement time and downtime remain constant, around 0.5
seconds (i.e., the total replacement time equals to the down-
time in HyperFresh). It is because, HyperFresh relocates the
memory ownership instead of copying pages leading tomuch
shorter OS replacement and downtime.

Notice that, the OS replacement time (e.g., 0.5 seconds) is
higher than the hypervisor replacement time (e.g., 10 ms).
The main reason is that, HyperFresh’s OS replacement builds
on a user space checkpointing/restoration tool (i.e., CRIU),
which incurs high overhead in collecting state of processes
during which processes are paused. A low-overhead, kernel-
level solution is a subject of our ongoing investigations.
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Table 4. Performance slowdown after hypervisor replacement due to on-demand population of page table entries

Benchmarks Workload
(GB)

Before Replacement
Warm VM Performance

After Replacement
Cold VM Performance

Slowdown
(%)

Kernbench 1.4 361.4s 365.8s 1.2

SPEC CPU

mcf_s 6.5 794.8s 819s 3.04
cactuBSSN_r 13.5 304.6s 313s 2.8
omnetpp_r 3.6 549.3s 556s 1.23
xalancbmk_r 3.2 412.3s 414s 0.41
bwaves_s 3.5 4581s 4618s 0.81

Sysbench read-only 4 1358.8 trans/s 1348.6 trans/s 0.75
read-write 4 646.6 trans/s 625.1 trans/s 3.3

httperf 12KB/5000 0.5ms 0.6ms 20
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Figure 11. Container relocation with memory-intensive workloads.
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Figure 12. Comparison of application-level performance during container relocation.

Performance Impact:We evaluate two benchmarks, Sys-
bench [37] and Parsec [16], when they run in a container
during live relocation. Sysbench provides multi-threaded
memory testing by reading from or writing to preallocated
memory. We vary the buffer sizes from 128 MB to 1 GB, and

test write operations to this buffer. We compare three cases:
(a) the baseline without container relocation; (b) pre-copy
approach using CRIU during container relocation; and (c)
HyperFresh during container relocation. In Figure 12(a), the
completion time under HyperFresh is almost the same as
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the baseline. In contrast, the pre-copy based approach takes
longer time to complete for each run and its completion time
increases as the buffer size increases; the larger the buffer
size, the more memory is dirtied and copied using pre-copy.
Parsec is a shared-memory multi-threaded benchmark.

We run a variety of sub-workloads of Parsec during con-
tainer relocation and compare the total downtime during
the OS replacement between HyperFresh and the pre-copy.
Figure 12(b) shows that the total downtime for workloads
with higher memory usage is longer than those with lower
memory usage. For example, canneal and fluidanimate have
very high memory usage, whereas swaptions and bodytrack
use only a small amount of memory. Hence, canneal and flu-
idanimate have longer downtime during the OS replacement
than swaptions and bodytrack. We observe that, the total
downtime of all workloads with HyperFresh is almost half
that with the pre-copy based approach.
5 Related Work
Software aging [45] is the phenomenon where software er-
rors, such as memory leaks, accumulate over time, leading
to performance degradation or complete system failure. Soft-
ware Rejuvenation [28] is a proactive technique where the
system is periodically restarted to a clean internal state to
counter software aging. In cloud environments, software
aging of hypervisors and OS is of utmost concern, where the
impact of their failures could be widespread.

In cold rejuvenation of hypervisors, all VMsmust be restarted
whereas in warm rejuvenation the VMs’ memory state is pre-
served in persistent memory and restored after hypervisor
rejuvenation, avoiding costly read/writes to persistent stor-
age. Roothammer [38] proposed warm reboot to rejuvenate
a Xen hypervisor and avoids cache-misses by preserving the
VM images in the main memory.

A simpler approach is to live migrate VMs to a different
host. Live migration [18, 27] reduces the downtime by let-
ting the virtual machines run when the memory is copied
in multiple rounds to another host. However, live migration
also incurs network overhead due to large memory transfers.
In this paper, we eliminate the memory copies for intra-host
migration by page relocation on the same host. ReHype [40]
performs a micro-reboot [17] of the hypervisor by preserv-
ing the state of the VMs. The state of the rebooted hypervisor
is then re-integrated with the state of the preserved VMs.
Since this reintegration depends heavily on the hypervisor’s
state, the success rate is low. Kourai et. al proposed VM-
Beam [39] where a clean virtualized system is started and
all the virtual machines are migrated from old virtualized
system to new one with zero-memory copy. Unlike our ap-
proach, VMBeam takes 16.5 seconds to migrate a 4 GB VM
with zero memory copy, potentially due to non-live or sub-
optimal transfer of memory maps. Use of a hyperplexor for
guest memory co-mapping has also been proposed to support
‘hypervisor-as-a-service’ model [26, 60] for cloud platforms.

HyperFresh’s hyperplexor uses guest memory remapping
to enable fast hypervisor replacement. Additionally, Hyper-
Fresh also addresses reduction of nesting overheads during
normal execution and live container relocation.

Kernel patching is a complex process of replacing original
outdated functions or data structures with new ones. Ksplice
[4], Kpatch [31, 32], Kgraft [33] follow the mechanism of
replacing old vulnerable functions with new functions using
ftrace mechanism. Kpatch and Ksplice stop the machine to
check if any of the threads is executing in the function to be
patched. If any of the processes is executing or is sleeping
in the function to be patched, the kernel patching is retried
later or called off after several attempts. Kgraft keeps a copy
of both old and new functions. If the kernel code is active
during patching, it runs till completion before switching to
the new functions while the other processes use the updated
functions. Live patching [30] is a combination of Kpatch and
Kgraft kernel patching methods. Kernel patching technique
can be useful for applying simple fixes to delay system failure
until the next maintenance period, but it still requires an OS
reboot at some stage.Major changes to the kernel also require
immediate reboot to take effect. Further these techniques
cannot patch asm, vdso, or functions that cannot be traced. In
contrast, HyperFresh bypasses these problems by relocating
the memory of containers to a fresh co-located instance of
the kernel. Process and container live migration techniques
have also been extensively studied [9, 14, 20, 22, 42, 47, 48, 56,
58, 62], but all require the transfer of the memory contents
via network. HyperFresh combines memory remapping with
intra-host process migration used by CRIU [58] to eliminate
memory copying, making it suitable for live OS replacement.

6 Conclusion
We have presented HyperFresh, a faster and less disruptive
live hypervisor replacement approach. Leveraging nested
virtualization, a thin hyperplexor transparently relocates the
ownership of VMs’ memory pages from an old hypervisor
to a new replacement hypervisor on the same host, with-
out memory copying overheads. HyperFresh also includes
a number of optimizations to mitigate nesting overheads
during normal execution of VMs. We also demonstrated how
hyperplexor-based remapping approach can be applied for
live relocation of containers to replace the underlying OS.
Evaluations of HyperFresh show around 10ms hypervisor
replacement and sub-second container relocation times.

The source code for the prototype described in this paper
is available at https://github.com/osnetsvn/vfresh.git

Acknowledgment
We would like to thank our shepherd Tim Merrifield and
anonymous reviewers for their thoughtful feedback. This
work is supported in part by the US National Science Foun-
dation through award CNS-1527338.



Fast and Live Hypervisor Replacement VEE ’19, April 14, 2019, Providence, RI, USA

References
[1] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger,

Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji
Vembu, and John Wiegert. Intel virtualization technology for directed
I/O. Intel technology journal, 10(3), 2006.

[2] Amazon EC2. https://aws.amazon.com/ec2/.
[3] Amazon Lambda Programming Model. https://docs.aws.amazon.com/

lambda/latest/dg/programming-model-v2.html.
[4] Jeff Arnold and M Frans Kaashoek. Ksplice: Automatic rebootless

kernel updates. In Proceedings of the 4th ACM European conference on
Computer systems, pages 187–198. ACM, 2009.

[5] Autoscaling groups of instances. https://cloud.google.com/compute/
docs/autoscaler/.

[6] Autoscaling with Heat. https://docs.openstack.org/senlin/latest/
scenarios/autoscaling_heat.html.

[7] Azure Autoscale. https://azure.microsoft.com/en-us/features/
autoscale/.

[8] Hardik Bagdi, Rohith Kugve, and Kartik Gopalan. Hyperfresh: Live
refresh of hypervisors using nested virtualization. In Proceedings of
the 8th Asia-Pacific Workshop on Systems, page 18. ACM, 2017.

[9] Barak, A. and Shiloh, A. A Distributed Load-Balancing Policy for a
Multicomputer. In Software-Practice and Experience, volume 15, pages
901–913, 1985.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In ACM SIGOPS Operating Systems Review,
volume 37, pages 164–177. ACM, 2003.

[11] Fabrice Bellard. QEMU: A fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track, volume 41,
page 46, 2005.

[12] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav
Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami
Yassour. The Turtles project: Design and implementation of nested
virtualization. In Proc. of Operating Systems Design and Implementation,
2010.

[13] SPEC CPU 2017 benchmark suite. https://www.spec.org/cpu2017/.
[14] Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Fiuczinski, M., Becker,

D., Chambers, C., and Eggers, S. Extensibility, Safety and Performance
in the SPIN Operating System. In Proceedings of the 15th Symposium
on Operating Systems Principles, pages 267–284, 1995.

[15] Franz Ferdinand Brasser, Mihai Bucicoiu, and Ahmad-Reza Sadeghi.
Swap and play: Live updating hypervisors and its application to Xen. In
Proceedings of the 6th edition of the ACMWorkshop on Cloud Computing
Security, pages 33–44. ACM, 2014.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceed-
ings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008. http://parsec.cs.princeton.edu/.

[17] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman,
and Armando Fox. Microreboot — a technique for cheap recovery. In
Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages 3–3, Berkeley,
CA, USA, 2004. USENIX Association.

[18] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
migration of virtual machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation-Volume 2,
pages 273–286. USENIX Association, 2005.

[19] Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV networking in Xen:
Architecture, design and implementation. In First Workshop on I/O
Virtualization, San Diego, CA, 2008.

[20] Douglis, F. and Ousterhout, J. Transparent Process Migration: Design
Alternatives and the Sprite Implementation. In Software-Practice and
Experience, volume 21, pages 757–785, 1991.

[21] Kubernetes Engine. https://cloud.google.com/kubernetes-engine/.
[22] Engler, D. R., Kaashoek, M. F., and O’Toole, J. J. Exokernel: An Operat-

ing System Architecture for Application-Level Resource Management.
In Proceedings of the 15th Symposium on Operating Systems Principles,
pages 26–284, 1995.

[23] Dan Goodin. Xen patches 7-year-old bug that shattered hypervisor se-
curity. In https://arstechnica.com/information-technology/2015/10/xen-
patches-7-year-old-bug-that-shattered-hypervisor-security/, 2015.

[24] Google Cloud platform. https://cloud.google.com/.
[25] Google Infrastructure Security Design Overview, 2017. https://cloud.

google.com/security/infrastructure/design/.
[26] Kartik Gopalan, Rohit Kugve, Hardik Bagdi, Yaohui Hu, Daniel

Williams, and Nilton Bila. Multi-hypervisor virtual machines: En-
abling an ecosystem of hypervisor-level services. In USENIX Annual
Technical Conference (USENIX ATC), pages 235–249. USENIX Associa-
tion, 2017.

[27] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy
live migration of virtual machines. SIGOPS Oper. Syst. Rev., 2009.

[28] Yennun Huang, Chandra Kintala, Nick Kolettis, and N Dudley Fulton.
Software rejuvenation: Analysis, module and applications. In IEEE
International Symposium on Fault-Tolerant Computing, 1995.

[29] iperf: The network bandwidth measurement tool. https://iperf.fr/.
[30] Kernel live patching. https://www.kernel.org/doc/Documentation/

livepatch/livepatch.txt.
[31] Kernel live patching - Kpatch. https://lwn.net/Articles/596854/.
[32] Kernel live patching - Kpatch2. https://lwn.net/Articles/706327/.
[33] kGraft: Live Kernel Patching. https://www.suse.com/c/

kgraft-live-kernel-patching/.
[34] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.

kvm: The Linux virtual machine monitor. In Proceedings of the Linux
symposium, volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[35] C. Kolivas. Kernbench. http://ck.kolivas.org/apps/kernbench/.
[36] Alexey Kopytov. Sysbench manual. MySQL AB, pages 2–3, 2012.
[37] Kopytov, A. Sysbench manual. 2009. http://imysql.com/wp-content/

uploads/2014/10/sysbench-manual.pdf.
[38] Kenichi Kourai and Shigeru Chiba. A fast rejuvenation technique for

server consolidation with virtual machines. In Proc. of Dependable
Systems and Networks (DSN), pages 245–255, 2007.

[39] Kenichi Kourai and Hiroki Ooba. Zero-copy migration for lightweight
software rejuvenation of virtualized systems. In Proceedings of the 6th
Asia-Pacific Workshop on Systems, page 7. ACM, 2015.

[40] Michael Le and Yuval Tamir. ReHype: Enabling VM survival across
hypervisor failures. ACM SIGPLAN Notices, 46(7):63–74, 2011.

[41] Linux Bug Tracker. https://bugzilla.kernel.org/buglist.cgi?
quicksearch=kvm.

[42] Litzkow, M., Livny, M., and Mutka, M. Condor: A Hunter of Idle
Workstation. In Proc. of the 8th International Conference on Distributed
Computing Systems (ICDCS), pages 104 – 111, 1988.

[43] Microsoft azure. https://azure.microsoft.com/en-us/.
[44] David Mosberger and Tai Jin. httperf – a tool for measuring web

server performance. ACM SIGMETRICS Performance Evaluation Review,
26(3):31–37, 1998.

[45] David Lorge Parnas. Software aging. In Proc. of the 16th international
conference on Software engineering, pages 279–287, 1994.

[46] P.Haul. https://criu.org/P.Haul.
[47] Platform ComputIng. LSF User’s and Administrator’s Guides. In

Platform Computing Corporation.
[48] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana,

J. Walpole, and K. Zhang. Optimistic incremental specialization. In
Proc. of the 15th Symposium on Operating Systems Principles (SOSP),
pages 314–324, 1995.

[49] Rusty Russell. virtio: Towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[50] Serverless. https://cloud.google.com/serverless/.

https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html
https://azure.microsoft.com/en-us/features/autoscale/
https://azure.microsoft.com/en-us/features/autoscale/
https://www.spec.org/cpu2017/
http://parsec.cs.princeton.edu/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/
https://cloud.google.com/security/infrastructure/design/
https://cloud.google.com/security/infrastructure/design/
https://iperf.fr/
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://www.kernel.org/doc/Documentation/livepatch/livepatch.txt
https://lwn.net/Articles/596854/
https://lwn.net/Articles/706327/
https://www.suse.com/c/kgraft-live-kernel-patching/
https://www.suse.com/c/kgraft-live-kernel-patching/
http://ck.kolivas.org/apps/kernbench/
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://bugzilla.kernel.org/buglist.cgi?quicksearch=kvm
https://bugzilla.kernel.org/buglist.cgi?quicksearch=kvm
https://azure.microsoft.com/en-us/
https://criu.org/P.Haul
https://cloud.google.com/serverless/


VEE ’19, April 14, 2019, Providence, RI, USA S. Doddamani, P. Sinha, H. Lu, T. Cheng, H. Bagdi and K. Gopalan

[51] Amazon Elastic Container Service. https://aws.amazon.com/ecs/.
[52] Azure Kubernetes Service. https://azure.microsoft.com/en-us/services/

kubernetes-service/.
[53] IBM Cloud Kubernetes Service. https://www.ibm.com/cloud/

container-service.
[54] VMware Pivotal Container Service. https://cloud.vmware.com/

vmware-pks.
[55] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Vir-

tualizing I/O devices on vmware workstation’s hosted virtual machine
monitor. In USENIX Annual Technical Conference, pages 1–14, 2001.

[56] Theimer, M., Lantz, K., and Cheriton, D. Preemptable Remote Exe-
cution Facilities for the V System. In Proceedings of the 10th ACM
Symposium on OS Principles, pages 2–12, 1985.

[57] Michael S. Tsirkin. vhost-net: A kernel-level virtio server, 2009. https:
//lwn.net/Articles/346267/.

[58] Checkpoint/Restore In Userspace. https://criu.org/Main_Page.
[59] VFIO Driver. https://www.kernel.org/doc/Documentation/vfio.txt.
[60] Dan Williams, Yaohui Hu, Umesh Deshpande, Piush K Sinha, Nilton

Bila, Kartik Gopalan, and Hani Jamjoom. Enabling efficient hypervisor-
as-a-service clouds with ephemeral virtualization. ACM SIGPLAN
Notices, 51:79–92, 2016.

[61] Xen Project. Live Patching of Xen. https://wiki.xenproject.org/wiki/
LivePatch.

[62] Zayas, E. Attacking the Process Migration Bottleneck. In Proceedings
of the 11th Symposium on Operating Systems Principles, pages 13–24,
1987.

https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://cloud.vmware.com/vmware-pks
https://cloud.vmware.com/vmware-pks
https://lwn.net/Articles/346267/
https://lwn.net/Articles/346267/
https://criu.org/Main_Page
https://www.kernel.org/doc/Documentation/vfio.txt
https://wiki.xenproject.org/wiki/LivePatch
https://wiki.xenproject.org/wiki/LivePatch

	Abstract
	1 Introduction
	2 Problem Demonstration
	2.1 Using Pre-Copy For Hypervisor Replacement
	2.2 Improving the Default Pre-Copy in KVM/QEMU
	2.3 Pre-Copy Analysis for Hypervisor Replacement

	3 HyperFresh
	3.1 Memory Translation for Nested Virtualization
	3.2 Hypervisor Replacement Overview
	3.3 Implementation Details
	3.4 Reducing Nesting Overheads
	3.5 HyperFresh for OS Replacement

	4 Evaluation
	4.1 Hypervisor Replacement Time
	4.2 Performance During Hypervisor Replacement
	4.3 Nesting Overhead
	4.4 Performance After Hypervisor Replacement
	4.5 Container Relocation

	5 Related Work
	6 Conclusion
	References

