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Abstract
Bare-metal cloud platforms allow customers to rent remote
physical servers and install their preferred operating sys-
tems and software to make the best of servers’ raw hardware
capabilities. However, this quest for bare-metal performance
compromises cloud manageability. To avoid overheads, cloud
operators cannot install traditional hypervisors that pro-
vide common manageability functions such as live migra-
tion and introspection. We aim to bridge this gap between
performance, isolation, and manageability for bare-metal
clouds. Traditional hypervisors are designed to limit and em-
ulate hardware access by virtual machines (VM). In contrast,
we propose Directvisor – a hypervisor that maximizes a
VM’s ability to directly access hardware for near-native per-
formance, yet retains hardware control and manageability.
Directvisor goes beyond traditional direct-assigned (pass-
through) I/O devices by allowing VMs to directly control
and receive hardware timer interrupts and inter-processor
interrupts (IPIs) besides eliminating most VM exits. At the
same time, Directvisor supports seamless (low-downtime)
live migration and introspection for such VMs having direct
hardware access.

CCS Concepts • Software and its engineering → Vir-
tual machines; Operating systems;

Keywords Virtualization, Hypervisor, VirtualMachine, Bare-
metal cloud, Live migration
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1 Introduction
Conventional multi-tenant cloud services [14, 27, 33] en-
able customers to rent traditional system virtual machines
(VM) [1, 5, 29] to scale up their IT operations to the cloud.
However, commodity hypervisors used for virtualizing these
platforms suffer from both performance overheads and iso-
lation concerns arising from co-located workloads of other
users. To address this concern, cloud operators have begun
offering [12, 13] bare-metal cloud service which allows cus-
tomers to rent dedicated remote physical machines. Bare-
metal cloud customers are assured stronger isolation than
multi-tenant clouds and bare-metal performance for critical
workloads such as big data analytics and AI.

However, the quest for native performance and physi-
cal isolation compromises cloud manageability. Since cloud
operators do not install hypervisors on bare-metal servers,
they lose many essential manageability services provided by
hypervisors, such as live migration [11, 25], high availabil-
ity [15], patching [10], and introspection-based security [18,
20, 24, 42, 44]. In contrast, multi-tenant cloud providers com-
pete to differentiate their offerings through rich hypervisor-
level services. We aim to bridge this gap between perfor-
mance, isolation, and manageability for bare-metal clouds.

We propose Directvisor to provide the best of both worlds:
performance of bare-metal clouds andmanageability of virtu-
alized clouds. Directvisor runs one or more DirectVMs which
are near-native VMs that directly access dedicated hardware.
Traditional hypervisors are designed to limit and emulate
hardware access by VMs. In contrast, Directvisor is designed
to maximize a VM’s ability to directly access hardware for
near-native performance while retaining hardware control
and manageability. During normal execution, the Directvi-
sor allows a DirectVM to directly interact with processor
and device hardware without hypervisor’s intervention, as

https://doi.org/10.1145/3381052.3381317
https://doi.org/10.1145/3381052.3381317
https://doi.org/10.1145/3381052.3381317


VEE ’20, March 17, 2020, Lausanne, Switzerland K. Cheng, S. Doddamni, T. Chiueh, Y. Li, and K. Gopalan

if the VM runs directly on the physical server. However,
Directvisor maintains its ability to regain control over a Di-
rectVM when needed, such as for live migration, introspec-
tion, high availability, and performance monitoring. Specifi-
cally, Directvisor makes the following novel contributions.

(1) Direct Interrupt Processing: Directvisor goes be-
yond traditional direct-assigned (pass-through) I/O devices
to allow VMs to directly control and receive timer inter-
rupts and inter-processor interrupts (IPIs) without intercep-
tion or emulation by the hypervisor. This is accomplished
through a novel use of processor-level support for virtual-
ization [30, 49], directed I/O, and posted interrupts [2, 31].
Direct receiving of timer interrupts and IPIs in a VM greatly
reduces the corresponding processing latencies, which is im-
portant for latency-critical applications. In contrast, existing
approaches [3, 39, 45, 48] focus only on direct processing of
device I/O interrupts. Additionally, Directvisor also elimi-
nates the most common VM exits and nested paging over-
heads, besides ensuring inter-VM isolation and hypervisor
transparency. Other than during startup and live migration,
the Directvisor is not involved in a DirectVM’s normal exe-
cution.

(2) Seamless Live Migration and Manageability: Di-
rectvisor supports seamless (low-downtime) live migration
of a DirectVM by switching the VM from direct hardware
access to emulated/para-virtual access at the source ma-
chine before migration and re-establishing direct access
at the destination after migration. Unlike existing live mi-
gration [23, 26, 41, 50–52] approaches for VMs with pass-
through I/O access, Directvisor does not require device-
specific state capture and migration code, maintains liveness
during device switchover, and does not require the hypervi-
sor to trust the guest OS. Additionally, Directvisor supports
other manageability functions of traditional clouds, such as
VM introspection and checkpointing.

Our Directvisor prototype was implemented by modify-
ing the KVM/QEMU virtualization platform and currently
supports Linux guests in DirectVM. The rest of this paper de-
scribes the detailed design, implementation, and evaluation
of Directvisor’s virtualization support for DirectVM.

2 Background
In this section, we provide a brief background on processor
support for direct I/O device access, Linux KVM/QEMU [1]
virtualization platform, and the associated overheads.

VM Exits: I/O operations and interrupt processing using
traditional VMs incur higher overheads than bare-metal exe-
cution because privileged I/O operations issued by a guest
OS are typically trapped and emulated by the hypervisor.
VM exit refers to this forced control transfer from the VM
to the hypervisor for emulation of privileged operations.
VM exits are also triggered by external device interrupts,
local timer interrupts, and IPIs. Each VM exit is expensive

since it requires saving the VM’s execution context upon the
exit, emulating the exit reason in the hypervisor, and finally
restoring the VM’s context before VM entry.

Direct Device Access: Intel VT-d [2] provides processor-
level support, called IOMMU [7], for direct and safe access
to hardware I/O devices by unprivileged VMs running in
non-root mode, which is the processor privilege with which
VMs execute. Virtual function I/O (VFIO) [45] is a Linux
software framework that enables user-space device drivers
to interact with I/O devices directly without involving the
Linux kernel. In the KVM/QEMU platform, a VM runs as
part of a user-space process called QEMU [6]; specifically,
guest VCPUs run as non-root mode threads within QEMU.
QEMU uses VFIO to configure a VM to directly access an I/O
device without emulation by either KVM or QEMU. In con-
trast, in a para-virtual [47] I/O architecture, the hypervisor
emulates a simplified virtual I/O device, called virtio [43],
which provides worse I/O performance than VFIO.

Timer Interrupts and IPIs: A CPU may experience two
types of interrupts: external and local interrupts. External
interrupts originate from external I/O devices, such as a net-
work card and disk. Local interrupts originate within proces-
sor hardware, such as timer interrupts and IPI. A local APIC
(Advanced Programmable Interrupt Controller) associated
with each CPU core delivers both types of interrupts.

Posted Interrupts: Normally, when a CPU running a
VM’s virtual CPU (VCPU) receives an interrupt, a VM exit is
triggered. The hypervisor then processes the interrupt and,
if necessary, emulates the hardware interrupt by delivering
virtual interrupts to one or more VMs. The Posted Interrupt
mechanism [2, 31] is a processor-level hardware support
that allows a VM to directly receive external interrupts from
directly assigned I/O devices without triggering a VM exit to
the hypervisor. In this case, the IOMMU and local APIC hard-
ware convert the external interrupt into a special interrupt,
called Posted Interrupt Notification (or PIN) vector, which do
not cause VM exits. Because the external interrupts “pretend”
to be a PIN interrupt, a VM can receive them directly without
any VM exits.

3 Directvisor Overview
Figure 1 shows the high-level architecture of Directvisor,
which runs as a thin hypervisor on each physical server
and partitions the physical hardware among one or more
DirectVMs. A small Guest Agent (a self-contained loadable
kernel module) coordinates with Directvisor to enable or
disable direct hardware access by the guest on demand, such
as before or after livemigration.We begin by describing a few
basic optimizations included in Directvisor which provide
the foundations for its more advanced features of direct
interrupt delivery and seamless live migration.

Direct I/O Device Access: As with traditional hypervi-
sors, Directvisor uses VT-d and posted-interruptmechanisms
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Figure 1. The Directvisor runs as a thin shim layer to pro-
vide a DirectVM with dedicated CPU, memory, timer, and
I/O access. All interrupts – timers, IPIs, and devices – are
directly delivered to the VMwithout hypervisor’s emulation.

to directly assign dedicated (pass-through) I/O devices to a
DirectVM and removes itself from both the I/O data path and
interrupt delivery path. For physical devices, such as mod-
ern network cards, which support multiple virtual functions
(VF), Directvisor uses existing mechanisms, such as VFIO, to
directly assign a virtual function for each DirectVM.

Dedicated Physical CPUs: Directvisor also assigns a
dedicated physical CPU for each virtual CPU of a DirectVM.
Doing so not only avoids contention between the hypervi-
sor and guest tasks but also eliminates the need to re-route
interrupts from the hypervisor to the guest. Directvisor re-
serves one physical CPU (CPU 0) for itself where it also
handles any external interrupts that are not meant for any
DirectVM. For hosting multiple DirectVMs, Directvisor per-
forms NUMA-aware assignment of dedicated physical CPUs
among different guests.

Dedicated Physical Memory: Directvisor pre-allocates
physical memory for each DirectVM to avoid second-level
(EPT) page faults during guest execution. Directvisor also
configures a DirectVM to use large pages (via transparent
hugepages in KVM/QEMU) so that memory accesses by the
guest generate fewer TLB misses due to EPT translations.

Disabling Unnecessary VM Exits: To allow direct con-
trol over timer and IPI hardware in the local APIC, Directvi-
sor disables VM exits due to reads and writes by the guest on
certain model-specific registers (MSR), specifically the initial
count register, divide configuration register, and interrupt
command register. Directvisor also implements an optimiza-
tion to prevent any idle virtual CPUs of a DirectVM from
exiting to hypervisor mode. Normally, when a CPU idles, the
OS executes a HLT instruction to idle (or halt) the CPU in
low-power mode. For a VM’s virtual CPU, the HLT instruc-
tion would normally trigger a VM exit to the hypervisor,
which emulates the HLT instruction by blocking the idle
virtual CPU and optionally polling for new events. Besides
increasing the latency of reviving the blocked virtual CPU,
we observed that frequent HLT-triggered VM exits also in-
crease CPU utilization due to event polling by hypervisor
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Figure 2. Indirect vs. direct timer interrupts and IPIs.

(see Section 9). Directvisor eliminates both overheads by
disabling VM exits when a guest’s virtual CPU executes the
HLT instruction; thus, the physical CPU directly idles in
guest mode without any emulation or polling overheads.

4 Direct Timer Interrupts and IPIs
We next describe how Directvisor enables a VM to directly
control and receive local timer interrupts and IPIs. Consider
Figure 2 which compares the relative costs for indirect and
direct delivery of timer interrupts and IPIs to a VM. Tra-
ditional indirect processing of timer interrupts and IPIs is
expensive due to several VM exits and entries. A timer in-
terrupt (1) triggers a VM exit (2). The hypervisor injects a
virtual timer interrupt into the guest upon VM entry (3). The
guest processes the interrupt and attempts to program the
next timer interrupt, which triggers another VM exit (4) and
VM entry (5). The hypervisor emulates the guest’s request by
programming the local APIC (6). For IPIs, a guest’s request to
send an IPI from one virtual CPU to another is still trapped
into the hypervisor (4, 5, 6). However, if the processor sup-
ports posted interrupts, then the IPI is delivered to the target
virtual CPU without any VM exits (7). As shown in Figure 2b,
Directvisor completely removes itself from the guest’s inter-
rupt processing path by configuring the DirectVM to use the
posted interrupt mechanism for both local timers and IPIs.
Next we describe these two mechanisms in more detail.

4.1 Direct Timer Interrupts
Figure 3 show how a DirectVM configures the timer in the
local APIC to directly receive and handle its timer interrupts.
To allow a DirectVM to directly control and receive local
timer interrupts, the Guest Agent coordinates with the hy-
pervisor. Directvisor passes the control of timer to the guest
through two configuration steps. First, Directvisor config-
ures the local APIC to deliver a posted interrupt notification
vector instead of a regular timer interrupt vector when the
timer expires (1). Next, the hypervisor executes a VM entry
operation and resumes the guest’s execution. If the timer
fires hereafter, the CPU remains in the guest mode. Second,
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Figure 3. Direct timer interrupts: Local APIC delivers a
posted interrupt notification instead of a timer interrupt
vector.

Directvisor configures the DirectVM to program the timer
directly by disabling VM exits due to the read and write op-
erations to the local APIC’s initial count register and divide
configuration register (5). Once a timeout value is written to
the initial count register, the timer starts ticking. Now, the
rest is how to deliver a physical timer interrupt disguised
as a guest’s virtual timer interrupt without the hypervisor’s
help. The key is to let the guest use the posted interrupt
mechanism. The hypervisor shares a posted interrupt de-
scriptor with the guest. After the guest directly receives and
processes a virtual timer interrupt via posted interrupt noti-
fication, it marks the timer interrupt bit in the shared posted
interrupt request bitmap and programs the next timer value
directly in the local APIC registers (2-5).
One side-effect of using posted interrupt notification is

that a spurious timer interrupt can be delivered unexpectedly
early if there is a VM entry, a posted interrupt from a device,
or an IPI. Specifically, such spurious timer interrupts hurt
the performance of high-speed and high-bandwidth devices.
For instance, considering a guest that uses a pass-through
network device, when a network interrupt must be delivered
to guest as a posted interrupt notification, it may happen that
timer interrupt bits may also be marked as pending in the
shared posted interrupt request bitmap. Since both timer and
network interrupt vectors are pending, the CPU has to decide
whether it should deliver the timer or network interrupt
first. Since the timer interrupt has a higher priority than
the network interrupt, the CPU chooses to deliver the timer
interrupt first. However, the timer interrupt thus delivered is
too early, that is, spurious for the guest’s actual timer event
and must be ignored. Further more, too many spurious timer
interrupts can prevent a high performance network interface
from achieving peak throughput due to high CPU utilization.

To solve the problem of spurious timer interrupts, a Di-
rectVM guest keeps track of both the arrival and the expected
expiration times of each timer interrupt. If the arrival time is
earlier than the expected expiration time, the guest acknowl-
edges the timer interrupt and does not proceed with regular
timer interrupt handling. Then, it restores the cleared timer
interrupt bit in the posted interrupt request bitmap. When
the actual timer expires, the corresponding posted interrupt
notification triggers the correct timer interrupt in the guest.

4.2 Direct IPIs
Traditional hypervisors trap and emulate the delivery of IPIs
between guest virtual CPUs. In contrast, Directvisor allows
virtual CPUs within a DirectVM to directly send IPIs to each
other without emulation by the hypervisor. This is possible
because Directvisor dedicates a physical CPU to each guest
virtual CPU, as discussed in Section 3. In addition, each CPU
has a per-CPU local APIC identifier, or physical APIC ID,
which is necessary to specify the physical CPU to which an
IPI must be delivered. Directvisor exports the physical APIC
IDs of all physical CPUs assigned to a guest via its Guest
Agent. Guest virtual CPUs then use the posted interrupt
mechanism to send IPIs to each other without VM exits,
similar to the direct timer interrupt mechanism described in
Section 4.1. The key difference is that, the hypervisor disables
VM exits when a guest virtual CPU sends an IPI by writing
to the per-CPU interrupt command register. For example,
consider that a virtual CPU A wants to send an IPI to virtual
CPU B. Virtual CPU A first sets the desired bit in B’s posted
interrupt request bitmap. Then A writes the physical APIC
ID of B’s physical CPU and the posted interrupt notification
request to its interrupt command register without incurring a
VM exit. Finally, physical CPUA delivers the posted interrupt
notification which triggers the IPI delivery on CPU B.

5 Seamless Live Migration
Directvisor supports seamless live migration of DirectVMs,
which is one of the key features of server virtualization. Live
migration of traditional VMs having pass-through device ac-
cess is hard for several reasons. First, migration of low-level
I/O device state requires the destination node to have an
identical instance of the I/O device. Even with identical de-
vices, some of the internal device-specific states may not be
readable by the hypervisor, which makes it difficult to restore
such state at the destination. Directvisor overcomes these
problems by switching a DirectVM from direct hardware ac-
cess (namely timer, IPI, and device access) to emulated/para-
virtual access at the source machine before migration and
switching the VM back to direct access at the destination
after migration. Unlike existing approaches [23, 26, 41, 50–
52] for VMs with pass-through I/O access, Directvisor does
not require device-specific state capture and migration code,
does not pause guest execution when switching between
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Figure 4. Seamless live migration via bonding of pass-
through and para-virtual network interfaces in a guest. From
(a) to (b), the guest agent transfers the network traffic from
the pass-through to para-virtual NIC before hot-unplugging
the NIC. From (c) to (d), the guest agent transfers the network
traffic back from para-virtual to hot-plugged NIC.

direct and emulated modes, and does not require the hyper-
visor to trust the guest OS. Next, we describe the details of
network interface migration followed by timer and IPI state
migration.

5.1 Pass-through NIC Migration
Consider a bare-metal server equippedwith a Single-Root I/O
Virtualization [19] (SR-IOV) capable network device, which
provides multiple network interfaces – one physical function
(PF) and multiple virtual functions (VF) – each of which has
its own Ethernet address. Directvisor itself uses the physical
function whereas each guest is assigned one virtual function
as a pass-through network device. Additionally, each guest
is also configured with a para-virtual network interface that
is emulated via the Directvisor. The Guest Agent in each
DirectVM configures a bonding driver [46] that combines
the pass-through and the para-virtual interfaces into one
bonded interface which the guest uses for communication.
Figure 4 demonstrates how a DirectVM’s network traf-

fic is switched between the pass-through and para-virtual
network interfaces before and after the live migration. The
bonding driver eliminates the need to have an identical net-
work adapter at the source and the destination. During the
normal guest execution, the bonding driver uses the pass-
through interface as the active slave and the para-virtual
network device as the backup slave. To prepare for live migra-
tion, Directvisor asks the Guest Agent to switch the guest’s
network traffic to the para-virtual device. Directvisor then
hot-unplugs the pass-through network interface from the
DirectVM as part of temporarily disabling all direct hard-
ware access for the guest. Directvisor then live migrates the
DirectVM (via the QEMU manager process) along with the
state of its para-virtual network device. Once the migration
completes, the DirectVM resumes on the destination server
and continues using the para-virtual network device. Con-
currently, the Directvisor at the destination hot-plugs a new

pass-through virtual function into the DirectVM, instructs
the Guest Agent to bond the new pass-through device with
the existing para-virtual device, and restores the new pass-
through device as the active slave to carry its network traffic.
The most important performance metric for live VM mi-

gration is the service disruption time. In a typical live migra-
tion [11, 25], a VM experiences a brief downtime when its
execution state is transferred from source to destination. In
addition, for VMs using pass-through devices, the hot-unplug
and hot-plug operations during migration can introduce ad-
ditional network downtimes. Directvisor eliminates these
additional network downtimes by proactively controlling
the network traffic switch over between para-virtual and
pass-through devices, so that the network liveness is not
affected by the hot-plug and hot-unplug operations.
In KVM/QEMU implementation, we also found that the

hot-plug operation forces the guest to pause execution, caus-
ing significant additional downtime. In particular, the hot-
plug operation at the destination consists of three steps.
(a) QEMU prepares a software object to represent the pass-
through network device. (b) QEMU populates the software
object with parameter values extracted from the PCIe con-
figuration space of pass-through device. (c) QEMU resets
the software object to set up the base-address registers and
interrupt forwarding information. These three steps occur
in the QEMU’s main event loop which forcibly pauses the
running guest. To minimize such a service disruption, we
modified QEMU to perform the first and second steps at
the destination during the transfer of guest’s dirtied pages.
QEMU performs the third step after resuming the guest at
the destination, thus completely eliminating this additional
downtime.

5.2 Timer and IPI Hardware State Migration
Recall that for direct local timer and IPI access during normal
operations, Directvisor configures a DirectVM to directly
access (i.e., without VM exits) the posted-interrupt request
bitmap, themultiplication and shift factors of calibrated clock
provided by the hypervisor, the initial count register (to
set the timer), and the interrupt command register (to send
an IPI). Before live migration, Directvisor disables direct
timer and IPI access for the DirectVM by coordinating with
the Guest Agent. Specifically, it stops sharing the posted-
interrupt descriptor, enables VM exits for updating the initial
count and interrupt command registers, configures local
vectors to deliver physical timer interrupts and IPIs instead
of posted interrupts, and restores the guest’s adjusted view
of multiplication and shift factors. Once the guest switches
to using virtualized timers and IPI, the Directvisor can live
migrate the guest to the destination. After the migration
completes, Directvisor reenables direct timer and IPI control
for DirectVM by restoring direct access to the above state.
This switchover between direct and virtualized modes of
access is largely transparent to the guest, other than the
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coordination between the Directvisor and the Guest Agent.
Also, the switchover takes negligible time and is performed
live as the guest continues running.

6 Isolation and Security Considerations
Directvisor does not trust guests or assume fully cooperative
guests. Traditional EPT and IOMMU-based isolation remains
unchanged for DirectVM. Directvisor always controls the
boot processor and its local APIC. Guests cannot access or
modify other guests’ local APIC state because physical CPUs
are dedicated to individual DirectVMs. Actions performed
by Guest Agents are local to the respective guests and do
not affect other co-located guests.

Control over the timers and IPI hardware is important for
a hypervisor to maintain its overall control over physical
CPUs. Although Directvisor permits a DirectVM to control
timer and IPI hardware on its assigned CPUs, it can reclaim
control over these resources whenever needed by simply
switching the guest to emulated mode. One example is dur-
ing VM live migration, discussed in Section 5. Before live
migration, Directvisor reclaims control over local timers and
IPI hardware by enabling previously disabled VM exits and
reconfiguring the APIC to deliver the physical interrupts that
cause VM exits. If for any reason a Guest Agent becomes
non-responsive, the Directvisor can still forcibly switch the
corresponding DirectVM to emulated access mode without
guest consent.
One potential isolation concern could be if a malicious

guest sends unwanted direct IPIs to other guests or to the
hypervisor by guessing their physical APIC IDs. This situ-
ation can be detected in a couple of ways and handled by
turning off direct access for the offending guest. First ap-
proach is that the IPI receiver could simply monitor the rate
of incoming IPIs and inform the hypervisor of unusual IPI
activity via the Guest Agent, which could then temporarily
switch all guests to emulated IPI delivery mode to identify
the offending guest. A second, potentially simpler, approach
is to verify that each received IPI is from a valid sender, that
is, one of guest’s own virtual CPUs, by recording the sender
virtual CPU’s identifty in a guest-private memory, which the
receiver virtual CPU verifies before acting on an IPI.

7 Other Use Cases
Besides live migration, here we discuss other illustrative use
cases that would benefit from Directvisor.

Low-LatencyApplications:Real-time applications, which
have strict timing constraints, can benefit from Directvi-
sor because a DirectVM processes interrupts with lower
latency than traditional VMs. Specifically, the DirectVM (a)
directly controls the local APIC hardware (through model-
specific registers) without VM exits to schedule timer in-
terrupt and IPI delivery, (b) directly receives all interrupts
(device, timers, and IPIs) without VM exits, and (c) remains

(a) Guest

(b) Directvisor

Figure 5. The Volatility introspection tool in Directvisor can
identify a hidden rootkit “evil” in DirectVM.

free of timing jitters due to resource contention by dedi-
cated CPU and memory. In Section 9.1, we show that a Di-
rectVM provides close to bare-metal timer event and IPI
processing latencies which are an order of magnitude lower
than with a traditional (Vanilla) VM. Likewise, Table 3 shows
that round-trip packet latency on a 40Gbps network link is
also close to bare-metal latency due to use of posted interrupt
delivery.

VM Introspection: VM introspection refers to a hypervi-
sor ability to transparently examine a VM’s memory content
for manageability functions, such as malware detection and
performance monitoring. Here we demonstrate that VM in-
trospection can be performed on a DirectVM. Figure 5(a)
shows that we run a malware inside a DirectVM called Di-
amorphine [37]. The malware hides a target process “evil”
which simply burns CPU cycles. Figure 5(b) showes that
Directvisor uses the Volatility [22] introspection tool to ex-
amine the VM’s memory and identified the process “evil”
from the guest process list.

VM-based Container Runtimes: VM-based container
runtimes such as Kata containers [21], gVisor [34], and Fire-
cracker [40], allow customers to run traditional containers
such as Dockers [28] using system VMs on multi-tenant
cloud platforms. However, stronger isolation of VMs comes
at the expense of giving up bare-metal performance for con-
tainers. Although these VM-based container runtimes are
optimized to boot quickly, the underlying traditional hyper-
visors reintroduce all the runtime virtualization overheads,
such as VM exits and I/O device emulation. Furthermore,
these VM-based runtimes do not support seamless live mi-
gration of containers because they also reintroduce many
semantic dependencies between the container and the host
OS which are difficult to decouple. Directvisor can be used
to run such VM-based container runtimes using DirectVMs
to achieve bare-metal performance like native containers,
while being fully live migratable and manageable like VMs.
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8 Implementation-specific Details
Directvisor is implemented by modifying the KVM/QEMU
virtualization platform (Linux kernel 4.10.1 and QEMU 2.9.1).

Small Footprint: During runtime, Directvisor maintains
a small execution footprint, currently one (shareable) CPU
core and around 100MB of RAM, with room for further re-
ductions.

Guest’s CodeChanges: The special Linux kernel module
is installed in an unmodified Linux guest. The module helps
to enable or disable the direct timer and IPI delivery. The
guest’s kernel module has 704 lines of code. Of these, 177 and
193 lines support direct timer and IPI delivery, respectively.
The rest deals with managing HLT -triggered VM exits, direct
writes to the initial count and interrupt command registers,
initialization and termination of bonding driver, and other
supporting functions.

Virtual-to-Physical CPUAssignment:Directvisor keeps
the boot CPU or CPU0 for itself and dedicates the rest to
DirectVMs. Each guest virtual CPU is pinned to a dedicated
physical CPU core. Directvisor exports the local APIC IDs
of a guest’s physical CPUs to its Guest Agent, which uses
these IDs for direct IPI delivery among guest virtual CPUs.

DisablingHLT Exiting andUpdating theMSRBitmap:
To disable HLT -triggered VM exits, Directvisor clears the
HLT -exiting bit of processor-based VM-execution control
in the VM control structure. Directvisor also disables VM
exits due the writes to the initial count register and interrupt
command register of the local APIC.

Guest Bonding Driver: The Guest Agent configures the
bonding driver to use the pass-through network interface
and para-virtual interface as the active slave and backup
slave, respectively. Linux’s bonding driver provides a fail-
over option to change the MAC address of the bonded inter-
face and to broadcast gratuitous ARP packets to advertise
its new MAC address when its active slave fails. The Guest
Agent configures the bonding driver with this option to cut
down the network downtime due to the hot-unplug opera-
tions.

9 Performance Evaluation
We evaluate the performance of Directvisor on two physical
servers having 10 core Intel Xeon E4 v4 2.2 GHz CPU, 32GB
memory, and two network interfaces – a 40Gbps Mellanox
ConnectX-3 Pro network card and a 1Gbps Intel Ethernet
Connection I217-LM network card. Both the hypervisor and
the guest use Linux kernel 4.10.1. Directvisor is implemented
by modifying the KVM and QEMU 2.9.1. Directvisor con-
figures the guest with 1–9 virtual CPUs and 28GB of RAM,
besides para-virtual and one pass-through network inter-
face. The Guest Agent configures the bonding driver in the
active-backup mode with fail-over MAC option.

We used a Bare-metal server configuration and five guest
configurations to compare the effectiveness of Directvisor.
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Figure 6. Comparison of timer interrupt latencies.

Table 1 compares the five guest configurations in terms of
their VM exit behaviors.
• Bare-metal: A machine without virtualization.
• VHOST guest: uses a para-virtual network device
with VHOST as the backend.
• VFIO/VANILLA guest: uses pass-through network
device to directly handle network I/O and interrupts.
• OPTI guest: VFIO + disabled VM exits due to HLT
instruction and VMX preemption timer.
• DTID guest: OPTI + direct timer interrupt delivery.
• DID guest: DTID + direct IPI delivery.

In terms of measurement workloads and tools, we mea-
sured network throughput using iperf 2.0.5 [32], network
latency using ping [36], and CPU utilization using atopsar
2.3.0 [4]. We also used Perf 4.10.1 [38] to measure the number
of VM exits. To evaluate the direct timer and IPI latencies,
we developed an in-kernel Cyclictest benchmark inspired by
a similar userspace Cyclictest [16] benchmark. Third, we in-
vestigated the performance of CPU, memory and cache first
by Princeton Application Repository for Shared-Memory
Computers. We used the PARSEC benchmark [8] to eval-
uate the CPU, memory, and cache performance of various
workloads. We used SPEC CPU 2017 [9] benchmark to eval-
uate CPU-intensive workloads. Finally, we measured the
network downtime for our seamless VM live migration by
the in-house UDP packet generator and tcpdump [35].

9.1 Direct Interrupt Delivery Efficiency
We first compare both the timer and IPI latency across vari-
ous guest configurations. The timer interrupt latency is the
timing difference between the expected and actual wakeup
time when a thread sets a timer. We ran the experiment with
a sleep time of 200 µs for 10 million iterations. Unidirectional
IPI latency is the difference between the IPI sending and re-
ceiving times. To measure IPI latencies, we registered our
own special IPI vector in the host or guest kernels. When a
CPU received the special IPI, it recorded the timestamp. We
sent IPIs between two CPUs with an interval of 200 µs for
10 million iterations.
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VM Exit Happens When

Guest Configuration
Optimization

EPT Fault Access NIC NIC Interrupt HLT Instruction VMX Preemption Timer Timer Interrupt Inter-Processor Interrupt

VHOST Yes Yes Yes Yes Yes Yes Yes
VFIO/VANILLA No No No Yes Yes Yes Yes
OPTI No No No No No Yes Yes
DTID No No No No No No Yes
DID No No No No No No No

Table 1. Different virtualization configurations for a guest.
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Figure 7. Comparison of IPI latencies.

Figure 6 shows that the median timer-interrupt latency
for the Bare-metal, DID, DTID and VANILLA guests were
1.51, 2.03, 2.04 and 9.20 µs, respectively. Both the DTID and
DID guests came close to the Bare-metal performance with
an additional 0.52 µs latency. Figure 7 shows that the median
latency of IPIs for Bare-metal, DID, DTID and VANILLA
guest were 1.80, 2.89, 3.33 and 9.35, µs respectively. The DID
guest had a 1 µs extra latency than the Bare-metal case.

Bandwidth
(Gbps)

CPU
Core

Network Intr.
(Hz)

Timer Intr.
(Hz)

Bare-metal 37.39 0 118592 256
1 0 348

DTID Guest 37.35 0 110856 255
1 0 348

Table 2. Removal of spurious timer interrupts, when the
DTID guest performs the network-intensive workload.

Since both the network and timer interrupt delivery use
the posted-interrupt mechanism, network interrupts can trig-
ger spurious (early) timer interrupts which are filtered out
by the Guest Agent. The effect of spurious timer interrupts is
particularly notable when a DTID guest ran network inten-
sive workload over the InfiniBand link. In our experiment,
the CPU 0 processed both the network and timer interrupts
whereas the CPU 1 ran iperf [32] threads. The timers fired
at a frequency of 250Hz. In Table 2, the interrupt profile of
DTID guest matched the Bare-metal’s profile. If the DTID
guest did not use the filtering mechanism, its CPU 0 would

have experienced an additional 100,000 or more timer inter-
rupts. Although the DTID guest incurred an extra filtering
overhead for every network interrupt, this overhead had
negligible impact on its network throughput.

9.2 Live Migration Performance
Next, we show that Directvisor can live migrate a DirectVM
while maintaining liveness comparable to traditional pre-
copy migration for regular VMs. Figure 8 compares the
number of packets lost for four guest configurations where
the guest receives 1KB UDP packets at the rate of around
30K packets/sec while the guest was being migrated from a
source machine to a destination machine over the 1Gbps in-
terface. We chose 30K packets/sec because higher incoming
packet rates adversly interfered with VM migration; both
para-virtual network interface and live migration are man-
aged by the same QEMU process, causing CPU contention
within QEMU. The four guest configurations being compared
are as follows:
• Vhost-only: in which the guest uses only a para-virtual
(Vhost) network interface.
• Reactive Switchover: in which guest uses a bonding
driver. The active pass-through slave is hot-unplugged
from the guest at the source machine to reactively
trigger the bonding driver to switch traffic to its para-
virtual slave interface. Likewise, the pass-through slave
is hot-plugged back at destination to reactively trigger
a switch back at the destination.
• Managed Switchover: in which the incoming traffic is
proactively switched over at source before the hot-
unplug operation and switched back at destination
after the hot-plug operation.
• Optimized Switchover: which improves upon Managed
Switch by overlapping part of the hot-plug operation at
the destination with memory transfer from the source.

Figure 8a for the Vhost-only configuration shows that,
for traditional live migration, packets are lost mainly during
the stop-and-copy phase when the VM’s execution state is
transferred from source to destination, besides minor losses
during the preparation at source node. Our goal is to match
this liveness when migrating a DirectVM.

Figure 8b for the Reactive Switchover configuration shows
that there are two additional events that induce significant
packet loss besides the stop-and-copy phase. First when the
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Figure 8. Number of lost UDP packets during the live VM migration, when the guest receives UDP packets.

pass-through device is hot-unplugged at the source and sec-
ond when it is hot-plugged at the destination. This is ex-
pected because bonding driver takes non-negligible time to
detect the network state change and switch over the traffic.
Figure 8c for Managed Switchover configuration shows

that switching over guest traffic in a managed fashion com-
pletely eliminates packet losses at the source during hot-
unplug operation. However, packet losses remain at the des-
tination during the hot-plug operation. We tracked down
the cause of the latter packet losses to the fact that all guest
virtual CPUs are paused by QEMU during the entirety of the
hot-plug operation.

Figure 8d for Optimized Switchover shows that by splitting
the relevant portions of hot-plug operation and overlapping
them with memory copying phase of live migration, we can
avoid pausing the guest again once it resumes at the source.
Thus, all packet losses during the hot-plug phase are elimi-
nated and the liveness matches traditional live migration of
emulated guests.
Finally, we did not observe any missed timer interrupts

when disabling and re-enabling the direct hardware access
during migration. It took 450 µs to transform a VM from
VANILLA to DID configuration, while it took 420 µs to trans-
form the guest from DID back to VANILLA configuration.

9.3 Network I/O Performance
We now show that, with all the optimizations applied in
the DID configuration, a DirectVM can match the network
I/O performance of a Bare-metal server in terms of network
throughput, latency, and CPU utilization, while eliminating
almost all VM exits.

Throughput and Latency: In this experiment, we used
two CPUs to try to saturate a 40 Gbps InfiniBand link for
all configurations. To minimize CPU contention, one core
handled network interrupts while another handled softirq
requests and ran network workload. We used the third core
to monitor CPU utilization, which did not affect the net-
work performance. For the VHOST configuration, we used
one additional core to run the VHOST worker thread in the
host kernel. We experimented with two workloads. First,
we used the iperf [32] tool to generate two uni-directional
TCP streams to try to saturate the Infiniband link. We also
used the ping [36] tool to exchange back-to-back ICMP echo-
response messages between two machines.

Table 3 shows that all six configurations were able to sat-
urate the bandwidth of outgoing traffic over InfiniBand. All
but VHOST were able to saturate the bandwidth of incoming
traffic over InfiniBand. The VHOST configuration needed to
use three CPU cores to reach 34.36 Gbps for the incoming
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Host Guest
Active CPUs

Network

Guest Configuration
Performance

User% System% User% System%
Outbound
(Gbps)

Inbound
(Gbps)

Round-Trip Delay
(µs)

Bare-metal 0.68 90.59 – – 2 37.39 37.60 11
VHOST 79.32 172.74 0.31 35.19 3 37.61 34.36 24
VFIO 102.45 91.90 0.36 44.66 2 37.59 37.60 12
OPTI 199.58 0.42 0.85 99.97 2 37.55 37.58 12
DTID 199.58 0.42 0.89 90.55 2 37.59 37.60 12
DID 199.58 0.42 0.86 90.74 2 37.56 37.59 13
Table 3. Network throughput, latency, and CPU utilization for a network-intensive guest over 40 Gbps InfiniBand link.

Guest Configuration
Exit Reason

EPT Fault Physical Interrupt HLT Instruction PAUSE Instruction Preemption Timer MSR Write Total

VHOST 13652 98 10454 104 145 1065 25518
VFIO 0 126 36672 19 151 1421 38389
OPTI 0 547 0 0 0 1446 1993
DTID 0 3 0 0 0 1147 1150
DID 0 3 0 0 0 0 3

Table 4. VM exits per second per virtual CPU when the guest sends TCP traffic over a 40Gbps InfiniBand link.

traffic. The round-trip delay if 24 µs in the VHOST configu-
ration was approximately twice the latency of the other five
configurations due to numerous VM exits.

CPU Utilization: All except the VHOST configuration
are able to match the Bare-metal throughput and latency,
their CPU utilizations differ in important ways. Table 3
shows the CPU utilizationmeasured from both the host’s and
guest’s perspective when the guest saturated the InfiniBand
link. The CPU utilization is computed as a simple sum of
corresponding individual utilization values across all active
CPUs, leading to some values greater than 100%. Host User
and Host System represents the CPU utilization in the user
mode and system mode, respectively, as measured in the
host (hypervisor). Guest User and Guest System represent the
CPU utilization in the user and system modes, respectively,
as measured in the guest.

When interpreting the Host User value, one should remem-
ber that it includes the Guest User and Guest System values
also; from the hypervisor’s perspective, any CPU time spent
by the guest in non-root mode is counted against QEMU
process’ time usage. Thus, for OPTI, DTID, and DID configu-
rations which disable HLT-triggered VM exits, the Host User
time is misleadingly inflated because any CPU idle time in
non-root (guest) mode will be appear as busy time in Host
User mode.

From the table, we observe that the DTID and DID guests
came very close to matching the Bare-metal CPU utilization,
as expected. The OPTI guest consumed an additional 10%
CPU Guest System time. The VFIO guest consumed less Guest
System time but more Host System CPU time due to HLT-
triggered VM exits. The VHOST guest spent a majority of

time in Host System since network I/O was processed as part
of the VHOST worker thread.

VM Exits: We also measured the VM exits for the two
active virtual CPUs using the perf [38] tool, when the guest
transmitted TCP traffic over InfiniBand. Table 4 shows that in
the DTID configuration, we eliminated timer-related VM ex-
its by enabling the direct timer-interrupt delivery. However,
the DTID guest still experiences VM exits due to IPIs. Such a
VM exit happens when a DTID guest receives IPIs from the
Directvisor or other virtual CPUs. In the DID configurationa
we used the posted-interrupt mechanism to deliver direct
IPIs and eliminate all VM exits achieving close to bare-metal
performance.
Among other configurations, the VHOST guest suffered

the most VM exits mainly due to HLT-triggered VM exits
and EPT faults.
In contrast, the VFIO guest did not trigger any VM exits

when accessing its assigned network devices or receiving a
network interrupt. It still experienced more HLT -triggered
VM exits than the VHOST case. This behavior depended on
the amount of time that the guest was idled on its CPUs. For
the VHOST guest, the hypervisor used the guest’s CPU time
to handle the EPT faults and emulate HLT instructions. On
the other hand, the VFIO guest actually had a longer idle
time than the VHOST guest. When the VFIO guest occupied
CPUs longer and waited for its next network I/O, it idled
more often and issued HLT.

The OPTI configuration further eliminated HLT -triggered
VM exits but experienced 547 VM exits per second per vir-
tual CPU due to the local interrupts, most of which can be
attributed to timer interrupts. In our test, both the hyper-
visor and the guest set a timer resolution of 4ms or 250Hz,



Directvisor VEE ’20, March 17, 2020, Lausanne, Switzerland

0

5

10

15

20

25

30

Perl

Route Planning

Video Compressi
on

Chess GO

Su
doku GCC

XML C
onve

rsi
on

Data
 Compressi

on

Computer N
etw

ork

Sc
or

e 
of

 In
te

ge
r C

om
pu

ta
tio

n 
Th

ro
ug

hp
ut

BARE-METAL VANILLA DID DID-THP

Figure 9. Comparison of integer computation throughput
of SPEC CPU 2017 benchmark [9].
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Figure 10. Comparison of floating point computation speed
of SPEC CPU 2017 benchmark [9].

leading to at most 500 hardware timer interrupts every sec-
ond. In addition, iperf [32] threads set up its own timers and
rescheduling IPIs woke up iperf [32] threads.

In the VFIO configuration, the rate of VM exits per virtual
CPU due to the local interrupts was substantially less than
what we have observed in the OPTI configuration. Because
of the large number of HLT -related VM exits, a timer inter-
rupt could arrive at the CPU which was in the hypervisor’s
control. Such an interrupt did not contribute an additional
VM exit.

9.4 Parallel Application Performance
We now evaluate how closely Directvisor matches the per-
formance Bare-metal configuration when running parallel
applications. We use two benchmarks for evaluation, namely
SPECCPU 2017 [9] and PARSEC [8]. SPECCPU evaluates the
performance of various CPU-intensive workloads. PARSEC
evaluates various parallel workloads having diverse local-
ity, synchronization, and memory access profiles. In these
experiments, the DirectVM had eight dedicated cores and
27 GB RAM whereas Directvisor had the two cores and the
remaining 5 GB RAM. The topology of L1/L2/L3 caches was
exposed to the guests. The benchmark programs limited the
number of active CPUs to eight. By default, QEMU/KVM
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Figure 11. Comparison of PARSEC benchmark [8].

allocated the 2 MB huge pages for the guests usingmadvise()
to reduce TLB miss overhead.
For SPEC CPU 2017, we ran the two suites: integer rate

and floating-point speed. The integer rate suite ran eight con-
current copies of same program andmeasured the work done
per unit time. The floating-point speed ran eight OpenMP
threads [17] for each program and measured the amount of
time to complete the work. Figure 9 and 10 show the per-
formance of integer-rate and floating-point suite running
in guests in comparison with the Bare-metal. Particularly,
the DID-THP configuration disabled the support of trans-
parent huge pages (THP) for the DID guest. For the integer-
computation throughput, the DID guest’s performance came
close to Bare-metal’s performance within the two standard
deviations. One interesting case involved computer network
simulation. The DID guest experienced 1.2 score reduction
or 7.95% throughput reduction when compared to the Bare-
metal case. The DID guest without the huge-page support
had a worse throughput, which was 3.2 score reduction or
21.19% throughput reduction. However, enabling the huge-
page support further closed the performance gap for GCC,
XML conversion, and data compression. For the floating
point workloads, the DID guest matched bare-metal perfor-
mance.

Similarly, we ran the PARSEC benchmark [8] to study how
well the DID guest compared to the Bare-metal case. We ran
eight POSIX threads for eachworkload andmeasured the par-
allel execution time. Figure 11 shows the performance. The
DID guest’s performance was close to the Bare-metal’s. The
worst case for Canneal was about 5.85% slowdown compared
to Bare-metal. Without hugepage support, the DID guest
experienced 7.35% and 19.52% slowdown for Streamcluster
and Canneal, respectively. There were two notable observa-
tions. First, enabling huge page support helped to reduce the
performance difference between Bare-metal and DID guest
down to less than 8%. We speculate that the remaining gap
is due to sparse memory access pattern, resulting in more
TLB misses which are more expensive for virtual machines.
Second, sometimes the DID guest performed surprisingly
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better than the Bare-metal case. The reason could be that
when the processor started to use the TLB for 2 MB huge
pages, it saved the cost of walking the EPT. In comparison,
the Bare-metal case still used 4 KB pages which had a much
lower TLB coverage than using the 2 MB huge pages.

10 Related Work
To mitigate I/O-related virtualization costs, customers can
provision VMs with direct device assignment [2, 31]. How-
ever, doing so has meant sacrificing the ability to live mi-
grate VMs for load balancing and fault-tolerance due to the
difficulty of migrating the state of physical I/O devices. Di-
rectvisor supports close-to-bare-metal performance while
retaining the benefits of virtualized servers.

Live migration with direct device access: On-demand
virtualization [26] presented an approach to insert a hyper-
visor that deprivileges the OS at the source server just before
migration and re-privileges it at the destination after migra-
tion. However, this approach requires the hypervisor to fully
trust the OS being migrated, the OS having full access to
the hypervisor’s memory and code. Such lack of isolation
rules out the use of many hypervisor-level cloud services
that require strong isolation, such as VM introspection and
SLA enforcement. In contrast, a DirectVM cannot access
or modify Directvisor’s code or memory. Recent develop-
ments [23, 52] have proposed frameworks to support live
migration of VMs using pass-through I/O devices. These
approaches require guest device drivers to save and recon-
struct device-specific I/O states for VM migration. Similar
approaches [41, 50] allow a hypervisor to extract internal
state of virtual functions from SR-IOV devices by monitoring
and capturing writes to device-specific registers. However,
these approaches require implementing device-specific state
capture and reconstruction code in the VM by each device
vendor besides tracking of each device’s state changes by the
hypervisor. In contrast, Directvisor’s live migration mecha-
nism is device agnostic; device drivers in a DirectVM do not
need device-specific state capture and reconstruction code
and the Directvisor does not need to intercept guest I/O state
changes.
Another solution [51] closest to ours proposed using a

bonding driver in the guest to connect a para-virtual and a
pass-through network interface as a single network inter-
face. Before live migration, the hypervisor hot-unplugs the
pass-through interface and the guest automatically switches
its network traffic to the para-virtual interface. After the mi-
gration, the hypervisor hot-plugs the pass-through interface
at the destination and the guest switches the network traffic
back to the pass-through device. We observed that the hot-
unplug and hot-plug operations pause the guest execution
long enough to introduce significant network downtime. Di-
rectvisor eliminates these disruptions by switching network

traffic before and after the hot-unplug and hot-plug opera-
tions respectively besides addressing implementation-level
inefficiences with the hot-plug operation in QEMU. Addi-
tionally, Directvisor also supports live migration of guests
having direct control over local APIC timers and IPIs, which
earlier approaches do not address.

Reducing virtualization overheads: A number of tech-
niques have been proposed to reduce virtualization over-
heads in interrupt delivery by eliminating VM Exits to the
hypervisor. ELI [3] and DID [48] presented techniques for
direct delivery of I/O interrupts to the VM. Intel VT-d [2, 31]
supports a posted interrupt delivery mechanism [39]. How-
ever, these techniques do not fully eliminate a hypervisor’s
role in the delivery of device interrupt. Specifically, the hy-
pervisor must intercept and deliver device interrupts (us-
ing either virtual interrupts or IPIs) when the target VM’s
VCPU is not scheduled on the CPU that receives the device
interrupt. Further, idle guest virtual CPUs waiting for I/O
completion will trap to the hypervisor, where a halt-polling
optimizations can inadvertently end up increasing CPU uti-
lization. In contrast, Directvisor eliminates these overheads
in device interrupt delivery by combining the use of Intel
VT-d with optimizations to dedicate physical CPU cores to
the guest and disable VM exits when VCPUs are idle.
Finally, the key distinction of Directvisor lies in direct

local APIC timer and IPI access by the guest. Existing tech-
niques do not eliminate hypervisor overheads when a VM
interacts with its local APIC timer hardware and nor do they
support direct delivery of timer interrupts and IPIs between
virtual CPUs. Directvisor provides these features for a Di-
rectVM through a novel use of posted interrupt mechanism
and without VM exit overheads.

11 Conclusion
We presented Directvisor which provides virtualization sup-
port for bare-metal cloud platforms. Directvisor enables
near-native performance for DirectVMs while retaining the
manageability and isolation benefits of traditional clouds.
Directvisor goes beyond traditional direct-assigned (pass-
through) I/O to enable VMs to directly control and receive
hardware timer interrupts and inter-processor interrupts
(IPIs) besides eliminating most VM exits. At the same time,
Directvisor retains the ability to perform seamless live mi-
gration of DirectVM besides providing other manageability
functions such as the VM introspection.
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