
Agile Live Migration of Virtual Machines

Umesh Deshpandea, Danny Chanb, Ten-Young Guhb, James Edouardb, Kartik Gopalanb, Nilton Bilac
aIBM Almaden Research Center, San Jose, CA, USA

bComputer Science, Binghamton University, Binghamton, NY, USA
cIBM T.J. Watson Research Center, Yorktown Heights, NY, USA

audeshpa@us.ibm.com, b{dchan20, tguh3, jedouar1, kartik}@binghamton.edu, cnilton@us.ibm.com

Abstract—A key attraction of virtual machines (VMs) is live
migration – the ability to move their execution state across
physical machines even as the VMs continue to run. Unfortu-
nately, the traditional pre-copy and post-copy techniques are
not agile in the face of resource pressures at the source host,
since it takes a long time to transfer the memory state of
a VM. Consequently, the performance suffers for all VMs
– those being migrated as well as those being left behind.
Prior works have attempted to optimize indirect measures
of migration effectiveness such as downtime, total migration
time, and network overhead. However, none have treated the
performance of VMs impacted by migration as the primary
metric of migration effectiveness. We propose an Agile live
migration technique that quickly recovers the performance
of all VMs under resource pressure by eliminating resource
pressure faster than traditional live migration. The working
set of a VM is typically much smaller than its full memory
footprint. Our approach works by transparently tracking the
working set of each VM and offloading the non-working set
(cold pages) in advance to portable per-VM swap devices. We
present a new hybrid pre/post-copy technique that reduces the
performance impact on the VM’s workload by transferring
only the working set of the VM while enabling destination
to remotely access cold pages from the per-VM swap device.
We describe the challenges in the design and implementation
of Agile live migration in the KVM/QEMU platform without
modifying the guest OS in the VM. When live migrating
under memory pressure, we demonstrate a reduction in the
performance impact on VMs by a up to factor of 2, reduction
in migration time by up to factor of 4 besides reduction in
memory pressure on both the source and destination hosts.

I. INTRODUCTION

We address the problem of live migrating virtual machines
(VMs) quickly in response to resource pressures while
reducing the performance impact of migration. Virtualization
allows datacenters to better utilize their hardware by con-
solidating many virtual machines (VMs) on fewer servers
during non-peak hours. A VM’s active memory footprint,
or working set size, is one of the factors that determines
the extent of consolidation. Since less active VMs have
small working sets, the consolidation server may swap out
infrequently used pages. However, when the VM becomes
active again and its working set size increases, retrieving
swapped-out pages can degrade the VM’s performance.

To avoid a performance hit, some of the newly active
VMs must be migrated to new physical nodes to ensure that

all VMs have enough memory, CPU, and I/O resources to
restore their peak performance. Lengthy migration prolongs
the resource pressure at the source, which degrades the
performance of all VMs, whether being migrated or not.

Unfortunately, existing VM migration techniques such as
pre-copy [1, 2] and post-copy [3] lack agility in responding
to resource pressure. First, they require that all of the
VM’s memory be transferred during migration, not just the
working set. Secondly, any swapped out memory pages
of the migrating VM need to be swapped back in before
being transferred, which further increases the migration
time. Thirdly, the migration tool itself (such as QEMU in
KVM/QEMU or xend in Xen) may need to compete with
VM’s applications for access to the swap device, which may
increase thrashing and further slow down the migration.
While some existing virtualization platforms provide the
ability to configure per-VM swap devices whose contents
need not be migrated with the VM [4], the resident memory
of a VM may still contain significant amount of “cold” pages
that do not belong to the working set; these cold pages are
nevertheless transferred over the network.

In this paper, we present Agile live migration which can
respond more quickly to resource pressure than traditional
approaches. Agile migration is a hybrid pre/post-copy migra-
tion technique that eliminates the transfer of a VM’s cold
pages during the migration. The key is to retain only the
working set of a VM in memory during runtime, transfer
only the working set pages at migration time, and make
any cold pages remotely available to the destination on-
demand. Agile migration is less sensitive to the nature of
the workload than pre-copy, while it allows faster ramp
up of the migrating VM’s performance at the destination
than post-copy. Each VM’s cold pages are stored using
a per-VM remote swap device which is managed by the
host hypervisor, rather than the guest OS. The hypervisor
transparently tracks the working set of each VM and adjusts
each VM’s memory reservation without relying on guest
agents and with minimal impact on VM’s performance. The
per-VM swap device can be accessed from any host in the
cluster, allowing the swap device to be portable as the VM
migrates. In contrast, traditional swap devices managed by
the hypervisor are either not portable or don’t store all cold



pages, whereas those managed by guest OS don’t provide
the sufficient control over host memory pressure.

II. BACKGROUND

In this section we review the traditional pre-copy and
post-copy migration techniques and their impact on VM
agility and performance. Figure 1 shows various compo-
nents involved in live VM migration in both techniques.
The Migration Manager is an external management process
associated with each VM that initiates and carries out
the migration. The Migration Manager at the source host
establishes a TCP connection with the Migration Manager
at the destination and transfers the VM’s state consisting
of virtual CPUs (VCPU), memory contents, and I/O device
states. During the migration, any swapped-out pages are
brought back into memory and transferred to the destination.

Virtual 

Machine

Source Host

Migration
Manager

Migration
Manager

Virtual 

Machine
TCP 

Connection

Destination Host

Swap Device

Swap Pages In/Out

Figure 1. In traditional pre-copy and post-copy, the Migration Manager
swaps in all pages swapped out from the source host, then sends them
through a direct TCP connection to the destination.

Pre-copy Live VM Migration: In pre-copy live VM
migration, the VM’s memory is transferred from the source
to the destination iteratively while the VM is still running at
the source. In the first iteration, the VM’s entire memory is
transferred, whereas in subsequent iterations, only the pages
modified during the preceding iteration are transferred. Upon
converging on the VM’s writable working set, the VM is
suspended at the source and its writable working set and
the execution state is transferred to the destination, where
the VM resumes. The time during which the VM remains
suspended is called its downtime, whereas the time taken to
complete the entire migration is called its total migration
time. Since dirtied pages are retransmitted, write-intensive
applications increase the VM’s total migration time and
reduce pre-copy’s agility.

Post-copy Live VM Migration: In post-copy, upon
beginning the migration, the VM is immediately suspended
at the source, its execution state is transferred to the des-
tination, and the VM is resumed there. The VM’s memory
is both actively pushed from the source and demand paged
from the destination. Post-copy has low network overhead
since it transfers each page only once in contrast to pre-
copy which retransmits dirtied pages. In theory, post-copy is
very agile since the VM resumes execution at the destination

quickly after the migration starts. However, immediately
upon resumption at the destination, the VM may experience
a large performance degradation till all of its working set
pages are either demand paged or actively pushed from the
source.

III. DESIGN

The goal of Agile migration is to respond to resource
pressures by migrating out one or more VMs so as to quickly
restore the performance of all VMs – those being migrated
as well as those left behind at the source.

Figure 2 illustrates the approach behind Agile migration
as a hybrid of pre-copy and post-copy. Each VM is assigned
a per-VM swap device which is managed by the hypervisor.
This per-VM swap device can be accessed from either the
source or the destination hypervisors using block device
interface.

Agile migration begins by performing one live pre-copy
iteration to transfer the the VM’s working set (hot pages)
and then switches the CPU execution state to the destination.
Then onward, any pages dirtied by the VM are either actively
pushed to or demand-paged from the destination. The pages
residing in the swap device (cold pages) are not transferred
during the migration. Instead they are demand-paged from
the swap device at the destination. In the rest of this section,
we describe the operation of Agile migration in greater
detail.

Virtual 

Machine

Source Host

Migration
Manager

Migration
Manager

Virtual 

Machine

Destination Host

Read Write
Cold Pages

Read Cold 
Pages

Per-VM Swap Device

I1 I2
IN

Intermediate Hosts

Control 
TCP Connection

Figure 2. Agile VM migration: The Migration Managers transfer only the
working set through the direct TCP connection. Pages in the per-VM swap
device are demand-paged by the destination as needed.

1) Pre-Copy Phase: When migration begins, the source
Migration Manager establishes a TCP connection with
the destination Migration Manager. The source Migration
Manager transfers the in-memory state of the VM to the
destination while the VM still runs at the source. As the
Migration Manager at the destination receives the pages
over the connection, it copies them into the address space
where the VM shall arrive. For each swapped out page, the
Migration Manager at the source transfers only the page
offset on the swap device. As the source Migration Manager
transfers pages, the VM may still modify them, so the source
Migration Manager records dirty pages in a dirty bitmap.



Upon completing one live pre-copy round, the Migration
Manager at the source suspends the VM and transmits its
CPU state and dirty bitmap to the destination.

2) Post-Copy Phase: At the destination, the Migration
Manager resumes the VM. There are two concurrent mecha-
nisms by which the destination receives the remaining dirtied
pages from the source – demand-paging and active push.

Demand-paging: As the VM resumes at the destination,
it faults upon the pages dirtied at the source during the pre-
copy round and upon the cold pages on the per-VM swap.
Upon receiving a page fault, the Migration Manager at the
destination checks if it should request the page from the
source by checking the page’s dirty bit in the dirty bitmap.
Otherwise, the destination’s Migration Manager finds the
swap offset for the required page and reads the page from
the per-VM swap. After servicing the page fault, the VM
resumes execution.

Active push: If we relied solely on demand-paging, then
transferring all dirty pages from the source host would take
an unbounded amount of time. Hence, to speed up the
transfer of dirty pages, the source Migration Manager ac-
tively pushes the remaining pages to the destination besides
responding to demand-paging requests. Once all the VM’s
memory pages have been transferred, the Migration Manager
at the source can terminate the VM and free up its memory.

A. Per-VM Swap Device

Our present design uses a Virtualized Memory Device
(VMD) that uses remote memory for the per-VM swap
devices. VMD is a distributed key-value store that maps
page offsets to memory pages of other hosts. We create
a VMD by aggregating the cluster-wide free memory of
the intermediate hosts I1 ... IN . The pages swapped out
from the source host are transferred over the network to
the intermediate hosts and stored in their memory. Any
machine with spare memory in a cluster can contribute to
this high-bandwidth low-latency distributed memory pool.
Alternatively, a VMD can also use low-power external
memory devices or networked storage as a backing store.
Although we implemented our own VMD by modifying our
prior MemX system [5, 6, 7], one could also adapt other dis-
tributed in-memory key-value stores such as Memcached [8]
or Redis [9] for use with Agile VM migration.

B. Migration Trigger and VM Selection

We develop a tool to dynamically measure the working
set size of each VM and to adjust the per-VM memory
reservation to closely match the working set size. If the
aggregate working set size of all VMs were to exceed the
source host memory size, then the performance of all VMs
degrades. We implement a watermark-based mechanism to
detect such memory pressures in advance and trigger the
migration of VMs so as to free enough memory at the
source for the remaining VMs. When the aggregate working

set size of all VMs exceeds a high watermark, we start
migrating VMs to other hosts. We migrate fewest VMs from
the source which reduce aggregate working set size below
a low watermark. Thus the another migration is not needed
till the system reaches the high watermark again.

IV. IMPLEMENTATION

We implemented Agile migration on the KVM/QEMU
platform. The Migration Manager is a thread spawned by
each KVM/QEMU process to perform the migration of the
respective VM. We use VMD as a swap device to store the
cold VM pages. In the following section we describe the
implementation of VMD and the Migration Manager.

A. Virtualized Memory Device (VMD) Layer

The VMD is a distributed system which enables cluster-
wide memory sharing over an Ethernet network. VMD
aggregates the free physical memory of intermediate hosts
and presents it in the form of a block device. VMD is an
extension of our previous work on MemX [5, 10].

The VMD layer is separated into VMD client and VMD
server kernel modules. The VMD client module runs on
the source and destination hosts. The VMD server module
runs on each intermediate host. The clients and intermediate
hosts communicate using the TCP protocol. Figure 3 shows
the interaction between VMD clients and servers. Upon
reception of a read request from the Migration Manager,
the VMD client locates the intermediate server storing the
requested page, receives the page from the intermediate
server, and returns the page to the Migration Manager.
Upon reception of a write request, the VMD client deter-
mines which intermediate server will store the page using a
load-aware algorithm and forwards the page to the chosen
intermediate server. On the intermediate servers, memory
is only allocated after receiving a page write request. No
physical memory is reserved in advance. Each VMD server
periodically updates the VMD clients about the availability
of memory. The load-aware algorithm works by selecting a
VMD server in round-robin order, which reports having any
unused memory.

We divide the aggregate memory space into logical par-
titions, referred to as namespaces. To each migrating VM,
we assign a separate namespace as its per-VM swap device.
The VMD client exports the namespace as a block device
to the Migration Manager. For instance, on a host running
three VMs, the VMD client would export three block
devices representing three separate namespaces: /dev/blk1,
/dev/blk2, and /dev/blk3. Using the block device interface,
the Migration Manager can interact with all intermediate
servers without needing to know where a page will be stored
and how many intermediate servers are participating in the
migration. This abstraction simplifies the implementation of
the Migration Manager.



Our implementation of the VMD uses the excess memory
at intermediate hosts to stage the VMs’ cold pages. However,
it is possible to extend the amount of swap space available
at the VMD by using excess disk space (HDs and/or SSDs)
alongside the excess memory available at the intermediaries.

VMD Server VMD Server

Physical Memory Physical Memory

Intermediate Hosts

Per-VM 
Swap 

Device

Control Message
Virtual 

Machine

Source Host

Migration
Manager

VMD Client

Page

VMD
Swap 

device for 
Cold Pages

Virtual 

Machine

Destination Host

Migration
Manager

VMD Client

VMD Service 
Cold Page 

Faults

Page Fault

Figure 3. Message exchange and data transfer between the Migration
Managers and VMD during Agile migration

B. Per-VM Swap Device

A per-VM swap device is a swap device assigned for a
specific VM and is not shared with other VMs. In contrast,
system-wide swap devices are shared with all processes and
VMs running on the host. We use Linux cgroups to assign
a VM to its per-VM swap device. Cgroups are used to
create process groups. The users can manage and track the
resources allocated to the group [11]. A few subsystems
the user can control for a cgroup include memory, CPU,
and I/O devices. In the memory subsystem, a user can
control how much memory is allocated and limit swap
usage for a cgroup. Cgroups does not allow per-cgroup
swap file by default so we used a patch to add per-cgroup
swap file support to the Linux kernel [12]. We assign each
KVM/QEMU process into a separate cgroup and assign each
cgroup its own namespace in the VMD. This ensures that all
pages belonging to a VM are swapped out to its respective
VMD namespace and swapping rate can be tracked per VM.

The motivation for using a per-VM swap device is that
the VM’s swapped out cold memory state can accompany
the VM wherever it is migrated. With a common host-level
swap device, the source host discards the cold pages once
the VM has migrated out of the host so that the swap space
can be reused for other pages. Agile migration requires that
the cold memory state of the VM is kept on the swap device
even after the migration of in-memory state is complete, so
that the cold pages can be requested when they are accessed
later. Reusing the space occupied by the cold VM pages can
corrupt the VM memory state. Therefore, we disconnect the

per-VM swap device from the source host once the migration
of in-memory VM state completes, but the device remains
accessible from the destination host.

C. Avoiding Transfer of Swapped Out Pages

On KVM/QEMU platform, a VM runs as a KVM/QEMU
process. The process exports part of its virtual address
space to the VM as its physical memory. Thus the VM’s
physical page frames are accessible from the host through
the KVM/QEMU’s corresponding virtual addresses. The
KVM/QEMU process shares the VM’s address space with
the Migration Manager allowing it to access and transfer the
VM pages. During migration, the Migration Manager identi-
fies if the page is swapped out by referring to its page table
entry (PTE) from its virtual address. If the page is swapped
out the Migration Manager avoids its transfer. To detect
if a page has been swapped out, the Migration Manager
looks at the corresponding VM’s KVM/QEMU process’s
page table at /proc/pid/pagemap, where pid is the process’s
ID. Pagemap allows userspace programs to view a process’s
page table. The pagemap is indexed by page numbers and
provides information for each PTE including if the page
has been swapped out and its offset on the swap device if it
has been swapped. During migration, the Migration Manager
refers to the pagemap before transferring every page. Using
a page’s host virtual address, the Migration Manager looks
for the corresponding PTE in the process’s pagemap and
determines if the page has been swapped out.

D. Transparently Tracking VM’s Working Set

Detecting resource pressure and selecting VMs to migrate
both depend upon accurate knowledge of the working set
size (WSS) of all VMs. We developed a tool to let the
hypervisor periodically estimate the WSS of each VM and
adjust its memory reservation. Our tool periodically extracts
the swapping activity of a VM using the iostat utility
on the per-VM swap device and computes the number
of pages read/written per second. If the swapping rate S
goes above a pre-determined threshold τ , then the VM’s
reservation is increased by a factor β (which is greater
than 1), until swapping activity falls below the threshold.
Similarly, if the swapping rate S is above the threshold
τ , then the VM’s reservation is decreased by a factor α
(which is less than 1) until the threshold τ is breached.
The memory reservation of a VM is changed by modifying
specific parameters of the cgroup associated with each
VM. The memory reservations are initially adjusted every
2 seconds until a stable WSS is reached, at which point, the
adjustment interval is increased to every 30 seconds. Our
tool can monitor and adjust the reservation for a single VM,
as demonstrated in Section V-D. We are currently enhancing
this tool to compile the aggregate WSS of all VMs and to
trigger migration when the aggregate exceeds a threshold.



E. Operations at the Source Machine

Our implementation of Agile migration is based upon a
hybrid pre/post-copy implementation in KVM/QEMU. Upon
initiation of migration, the Migration Manager at the source
performs one round of pre-copy. In the first pre-copy round,
all pages are marked as dirty in the dirty bitmap. The dirty
bitmap contains the status of each memory page belonging
to the VM. A page is considered clean if it has not been
modified in the previous round of pre-copy. During the pre-
copy round, the Migration Manager goes through the dirty
bitmap and checks if the page’s swapped bit has been set in
the pagemap. If the page’s swapped bit is not set, then the
page is transferred in full to the destination and its dirty
bit is reset to clean. Otherwise, the page’s offset on the
swap device is obtained from the pagemap and transferred
to the destination along with a SWAPPED flag to indicate
the status of the page. After the completion of the first pre-
copy round, the dirty bitmap contains bits marked as set
for the pages modified during the first round. At this point,
the Migration Manager at the source suspends the VM and
transfers the CPU state, dirty bitmap to the destination. After
the CPU state has been transferred to the destination, the
source begins actively pushing the remaining dirtied pages
to the destination. The source also services the page faults
at the destination host by sending the requested pages.

F. Operations at the Destination Machine

Before migration begins, a KVM/QEMU process is
started at the destination to receive the incoming VM. The
process allocates memory for the VM where the incoming
pages are copied. When an entire page is received, it is
directly copied into the allocated VM’s memory space.
Whereas, when a message with SWAPPED flag is received,
the corresponding swap offsets is stored into a table and the
corresponding bit is marked as set into the swapped bitmap.
Upon reception of the CPU state, and dirty bitmap, the VM
resumes its execution at the destination. From here onward,
the Migration Manager at the destination receives pages
actively pushed from the source. These pages are copied into
the VM’s memory. However, if the VM tries to access a page
which is not received from the source, because either the
page was dirtied by the VM during the first pre-copy round
or the page was swapped out, a page fault is triggered. To
handle the fault, the Migration Manager either requests the
page from the source or reads it from the swap device.

How faults are handled: The destination Migration
Manager consists a UMEM kernel driver and a user-level
UMEMD process. The KVM/QEMU process shares the
part of its address space assigned as a VM’s memory with
the UMEMD process. This allows UMEMD to receive
pages from the source side and copy them into the VM’s
memory. The UMEM kernel driver and UMEMD process
communicate through a umem device (/dev/umem). When
the VM faults upon a page that is not yet present in its

memory, the fault is trapped by the UMEM driver and
forwarded to the UMEMD process. The UMEMD process
maintains a dedicated thread to handle the faults which in
turn retrieves the faulted page and copies it directly into
the VM’s memory. It then notifies the UMEM driver, which
resumes the VM.

We modified the UMEMD process for Agile migration
to service page faults from both the VMD based per-VM
swap device and the source host. In Agile migration, the
VM generates two types of page faults. 1) Faults for the
pages modified by the VM during the first pre-copy round. 2)
Cold VM pages located on VMD. When the fault handling
thread is notified of the fault, it first determines whether
to request the faulting page from the source or the per-VM
swap device. For determining the type of the fault, the thread
refers to the swapped bitmap. If the corresponding bit is set,
then it reads the offset of the page from the swap offset
table, reads the page itself from the VMD, and copies the
page into the VM’s memory. If the swapped bit is not set,
the thread requests the page from the source side. Once the
page is in place, the thread notifies the UMEMD driver to
resume the VM’s execution.

V. EVALUATION

In this section, we compare the performance of Agile,
pre-copy, and post-copy migration in responding to memory
pressure. Our testbed consists of three hosts, each with
twelve 2.1GHz Intel Xeon CPUs, 128GB DDR3 DRAM,
128GB Crucial SSD, and 1Gbps Ethernet cards. All hosts
are connected to a top of the rack Ethernet switch with
1Gbps interconnect, use Linux kernel 3.14 with the cgroups
patch applied, and Debian 7 for their operating system. Two
of the hosts serve as the source and destination for live
migration while the third serves as the intermediate host
in the VMD for Agile migration: the performance of the
VMD does not depend on the number of intermediate nodes
as long as they have enough memory and other resources.
We use the pre-copy and post-copy implementations pro-
vided by KVM/QEMU. Pre-copy and post-copy both use a
30GB swap partition created from the 128GB SSD at the
source host. In all experiments for Agile migration except
Section V-D, the VMs cgroup reservation is set to a size
equal to or smaller than its working set.

A. YCSB/Redis Experiment

In this section, we demonstrate the lack of agility of
pre-copy and post-copy migration in responding to mem-
ory pressure at the source host. We progressively generate
memory pressure at the source host using Yahoo Cloud
Serving Benchmark (YCSB) and Redis. Redis is a key-
value database and runs in-memory and YCSB is a database
benchmark client which interfaces with Redis. The source
and destination hosts are configured with 23GB of physi-
cal memory using boot-time configuration parameters. The



0 100 200 300 400 500 600 700 800 900 1000
Time (seconds)

0

8000

16000

24000

O
p

e
ra

ti
o
n
s/

se
co

n
d

Average Throughput Migration Start Migration End
VM1 WS size increases VM2 WS size increases VM3 WS size increases
VM4 WS size increases (WS : Working Set)

Figure 4. Average throughput of YCSB during pre-copy migration. Four VMs are running on the source host and each VM is running a Redis database
server and serving four different YCSB clients. One VM is migrated to relieve the memory pressure at the source host.

0 100 200 300 400 500 600 700 800 900 1000
Time (seconds)

0

8000

16000

24000

O
p

e
ra

ti
o
n
s/

se
co

n
d

Average Throughput Migration Start Migration End
VM1 WS size increases VM2 WS size increases VM3 WS size increases
VM4 WS size increases (WS : Working Set)

Figure 5. Average throughput of YCSB during post-copy migration. Four VMs are running on the source host and each VM is running a Redis database
server and serving four different YCSB clients. One VM is migrated to relieve the memory pressure at the source host.

0 100 200 300 400 500 600 700 800 900 1000
Time (seconds)

0

8000

16000

24000

O
p

e
ra

ti
o
n
s/

se
co

n
d

Average Throughput Migration Start Migration End
VM1 WS size increases VM2 WS size increases VM3 WS size increases
VM4 WS size increases (WS : Working Set)

Figure 6. Average throughput of YCSB during Agile migration. Four VMs are running on the source host and each VM is running a Redis database
server and serving four different YCSB clients. One VM is migrated to relieve the memory pressure at the source host.

source host runs 4 VMs each with 10GB memory and 2
vCPUs. Each VM is assigned a 5.5GB memory reservation
and runs a Redis database server containing a 9GB dataset.
Since the aggregate size of the Redis datasets exceeds the
VM’s memory reservation, loading the dataset results in
many VM pages being swapped out to the swap device. 4
YCSB clients are run on an external host to load and query
the 4 Redis databases.

We begin the experiment by having each YCSB client
query a small fraction (200MB) of the entire dataset using
read only operations and a uniform data distribution. Since
the amount of data requested by each YCSB client fits in
each VM’s 5.5GB memory reservation, all requested pages

that reside in the swap device are brought into memory
and all YCSB clients show high throughput. This workload
represents low VM application intensity and small working
set sizes. Such VMs are often consolidated to improve
memory utilization.

Next, starting at the 150 seconds mark, we progressively
increase the load in each VM by having each YCSB client
query a larger fraction (6GB) of the entire dataset one by
one every 50 seconds. Once all VMs become active, the host
begins thrashing as it cannot accommodate the increased
working set of each VM plus the host operating system
(around 200MB). Thus, the performance of all YCSB clients
degrades. To relieve the memory pressure at the source host,



we migrate one of the VMs to the destination host at the
400 seconds mark. After the migration is complete, the
source host can accommodate the remaining three VMs in its
memory and the performance of the YCSB client improves.
For the following experiment, we manually adjust the VMs’
memory reservation to reflect its working set size. Also,
since all the VMs run an identical workload, they have nearly
identical working set sizes. Therefore a VM is randomly
selected for migration.

1) Migration with Pre-copy: Figure 4 shows the average
performance of YCSB across all VMs during pre-copy
migration. Pre-copy migration takes a long time to complete
(470 seconds) compared to post-copy and Agile migration as
it needs to retransmit all dirtied pages. Also, the migration
time of pre-copy is affected by the amount of swapping
activity as each page on the swap device needs to be
retrieved before it can be sent to the destination.

2) Migration with Post-copy: Figure 5 shows the average
performance of YCSB across all VMs during post-copy
migration. Since post-copy doesn’t require retransmission
of dirtied pages, the total migration time with post-copy is
lower than pre-copy. The migration completes in only 247
seconds and therefore the YCSB performance recovers more
quickly. However, all VMs experience severe performance
degradation during the migration. Initially, as the migrated
VM resumes at the destination host, it faults upon the pages
that contain the dataset and still reside at the source host.
The degradation is caused by delay in serving the swapped
out VM pages that are requested by the VM running at
the destination host. However, the performance of migrating
VM, and thus the average performance of all 4 VMs,
recovers gradually during the migration.

3) Agile Migration: Figure 6 shows the average perfor-
mance of YCSB across all VMs during Agile migration.
Since only the in-memory part of the VM’s address space
is transferred during the migration, the migration completes
more quickly. As a result, the performance of the migrating
VM and the VMs left back at the source recovers more
quickly than with pre-copy and post-copy migration. For
comparison, pre-copy and post-copy require 533 seconds and
294 seconds respectively to restore the average performance
of YCSB to the 90% of its maximum performance. Whereas
with Agile migration, the performance of YCSB recovers
only in 215 seconds.

B. Migration of a Single VM

In this section, we increase the memory pressure at the
source host and observe its effect on the total migration
time and the amount of data transferred for the migration
of a single VM. To increase the memory pressure, we keep
the host memory size constant at 6GB while increasing the
VM memory size from 2GB to 12GB. As the VM memory
size is increased more data is swapped out on a disk.

2 4 6 8 10 12
VM Size (GB)

0

100

200

300

400

Ti
m

e
 (

S
e
co

n
d
s)

Pre-copy (Idle)
Pre-copy (Busy)
Post-copy (Idle)
Post-copy (Busy)
Agile (Idle)
Agile (Busy)

Figure 7. Total migration time for the migration of an idle or busy VM
with increasing memory size. Busy VM runs a Redis server with a dataset
almost as large as the memory size.

In the following experiment, we migration either an idle
or a busy VM. The busy VM runs a Redis server containing
a dataset nearly as large as the VM memory size leaving
only 500MB of free memory. We query the dataset from a
YCSB client residing on an external host and migrate the
VM during the test. We measure the total migration time, the
amount of data transferred and the performance of YCSB
during the test.

1) Total Migration Time: When the VM size exceeds the
host memory size, the host’s memory cannot accommodate
the entire VM. Therefore, it swaps out the cold VM pages
to disk. During migration with pre-copy or post-copy, these
pages are brought back into memory to be transferred to
the destination. To retrieve the cold pages from disk into
memory, other pages are swapped out to disk to create
space. The delay in retrieval of cold pages increases the total
migration time of the VM. From Figure 7, we observed that
when the VM is idle, the rate of memory transfer gradually
reduces once the VM memory size exceeds 6GB. The effect
is clearly visible for the migration of a busy VM. When the
VM is busy, the VM application and the Migration Manager
compete for access to the swapped out pages. Therefore, the
host experiences more thrashing in the busy VM setup than
in the idle VM setup, causing a sudden increase in the total
migration time. With pre-copy, the retransmission of dirtied
pages further increases the total migration time. With post-
copy, the total migration time for the busy VM is twice as
high as for the idle VM, although the same amount of data is
transferred in both cases. In contrast, since Agile migration
does not access the swapped out pages, the host experiences
less thrashing than with pre-copy and post-copy. As a result,
the total migration time of the VM remains constant once
the VM size goes past 6GB. The busy VM must retransmit
more dirty pages, so it transfers more data than the idle VM.

2) Amount of Data Transferred: Figure 8 shows the
amount of data transferred with pre-copy, post-copy and
Agile migration. With pre-copy and post-copy, the entire VM
memory state is transferred during the migration. Therefore,
the amount of data transferred increases linearly with the
VM memory size. In contrast, with Agile migration, only the



2 4 6 8 10 12
VM Size (GB)

0

4000

8000

12000

16000

A
m

o
u
n
t 

o
f 

D
a
ta

 (
M

B
)

Pre-copy (Idle) Pre-copy (Busy)
Post-copy (Idle) Post-copy (Busy)
Agile (Idle) Agile (Busy)

Figure 8. Amount of data transferred for the migration of an idle VM or
busy VM. Busy VM runs a Redis server with a dataset almost as large as
the memory size

in-memory pages are transferred during the migration. Since
the host memory size is 6GB, its memory accommodates
about 5.5GB of VM memory state. Therefore, even as the
VM varies in memory size, the amount of data transferred
with Agile migration remains constant at 5.5GB.

With post-copy, the amount of data transferred from the
busy VM increases linearly as that from the idle VM.
However, as the VM size increases, the amount of data
transferred with pre-copy increases at a higher rate than with
post-copy because of the retransmission of dirtied pages.
The larger VM requires more time to migrate, which allows
the VM to dirty even more pages. When the VM’s memory
footprint is smaller than the host’s memory size, the VM
is more responsive and the YCSB can modify more pages
than when the VM memory is partly swapped out. Therefore,
with pre-copy, the amount of data transferred increases more
quickly with the VM size up to 6GB. For Agile migration
also, all the pages dirtied during the first live round of Agile
migration are retransmitted after the VM resumes at the
destination. Therefore, Agile migration transfers more data
for the migration of a busy VM than for the migration of
an idle VM.

C. Application Performance

In this section, we use different applications to demon-
strate the effect of pre-copy, post-copy and Agile migration
on the application performance. We run 4 VMs on the
source host, each with 2 vCPUs and 10GB of memory. The
source and the destination hosts are configured with 23GB
of memory. Each VM can use up to 5.5GB of host physical
memory. A swap device serves additional required memory.
We execute the following applications inside the VMs and
migrate one VM while the application is in progress.

1) YCSB/Redis: We use the same setup as presented
in Section V-A. The 4 VMs each contain a 9GB
Redis dataset while 4 external YCSB clients query the
datasets. We migrate one VM while the application
is in progress to relieve the memory pressure at the

Pre-copy Post-copy Agile
YCSB/Redis (Ops/s) 7653 14926 17112
Sysbench (Trans/s) 59.84 74.74 89.55

Table I
AVERAGE APPLICATION PERFORMANCE ACROSS ALL 4 VMS WITH

PRE-COPY, POST-COPY AND AGILE MIGRATION. EACH VM HAS 10GB
MEMORY. ONE OF THE VM IS MIGRATED DURING THE TEST TO

RELIEVE THE MEMORY PRESSURE AT THE SOURCE.

source. We measure the average performance of the
application across 4 VMs through the migration.

2) Sysbench Online Line Transactions Processing
(OLTP) Benchmark: Sysbench [13] is a database
benchmarking tool. We run a MySQL server inside 4
VMs, each hosting an 8GB dataset. Since each VM
can use up to 5.5GB of memory, the host swaps out
the remaining dataset. We query the database using 4
clients from an external host. To relieve the memory
pressure at the source, we migrate one VM to the
destination host. We measure the performance of 4
clients through the migration over 300 seconds and
calculate the average.

Table I shows the average performance of the application
across all 4 VMs during the migration. Pre-copy re-transmits
the pages dirtied during the migration, which delays the
transfer of the VM memory state. Further, the additional
network traffic due to retransmission interferes with the
traffic of the applications communicating with the VMs
over the network. As a result, the applications perform
the worst with pre-copy. Post-copy is quicker than pre-
copy in eliminating memory pressures, so the VMs at the
source recover sooner. However, the performance of the
migrating VM suffers severely during migration, since the
VM requests the faulted pages from the memory constrained
destination. This adversely impacts the overall application
performance. Since, Agile migration performs only one live
round of memory transfer, it completes the live memory
transfer phase more quickly than pre-copy. Therefore, fewer
pages are dirtied. Moreover, since Agile migration eliminates
the transfer of the swapped out pages, Agile migration
least interferes with the application traffic. Consequently, the
applications perform the best with Agile migration.

Table II shows the total migration time and Table III
shows the amount of data transferred during the migration.
It can be observed that pre-copy clearly lacks agility in re-
sponding to memory pressure. With YCSB/Redis, pre-copy
migration transfers almost 2 times as much data as Agile
migration while taking 4 times as long as Agile migration.
Even with moderately write intensive applications, Agile
migration transfers less data than post-copy, while reducing
the total migration time by half.



Total Migration Time (Seconds)
Pre-copy Post-copy Agile

YCSB/Redis 470 247 108
Sysbench 182.66 157.56 80.37

Table II
COMPARISON OF TOTAL MIGRATION TIME OF PRE-COPY, POST-COPY

AND AGILE MIGRATION. WE RUN 4 10GB VMS AT THE SOURCE HOST
AND MIGRATE 1 VM DURING THE TEST TO RELIEVE THE MEMORY

PRESSURE AT THE SOURCE.

Amount of Data Transferred (MB)
Pre-copy Post-copy Agile

YCSB/Redis 15029 10268 8173
Sysbench 11298 10268 7757

Table III
COMPARISON OF THE AMOUNT OF DATA TRANSFERRED WITH

PRE-COPY, POST-COPY AND AGILE MIGRATION. WE RUN 4 10GB VMS
AT THE SOURCE HOST AND MIGRATE 1 VM DURING THE TEST TO

RELIEVE THE MEMORY PRESSURE AT THE SOURCE.

D. Transparent Working Set Tracking

Here, we demonstrate the accuracy of our approach for
transparently tracking the working set of a VM and its
impact on the applications running inside the VM. We run
a VM having 2 vCPUs and 5GB memory, containing a
1.5GB Redis database. The host is configured with 128GB
of memory. The VM’s KVM/QEMU process is added in
to a cgroup with 5GB memory reservation. We query the
database from an external YCSB client. While the Redis
database is being queried, our mechanism tracks the VM’s
working set size and dynamically adjusts its memory reser-
vation. The reservation adjustment parameters are α = 0.95,
β = 1.03 τ = 4KB/sec. Figure 9 shows the accuracy of the
working set tracking mechanism, whereas Figure 10 shows
the impact of adjusting the VM memory reservation on the
performance of the YCSB client. It can be observed that our
mechanism quickly adjusts the memory reservation to match
the VM’s working set size. Further, YCSB quickly recovers
from any transient degradation.

VI. RELATED WORK

Different VM migration techniques have different ap-
proaches to reducing the amount of data transferred and total
migration time. Content optimizations such as deduplica-
tion [14, 15, 16, 17, 18] and compression [14, 19, 20] reduce
the amount of data transferred by eliminating or reducing the
number of uniform and identical pages sent. Ballooning aims
to reduce the memory footprint of a VM before migration
begins. Post-copy [3] transfers each VM page only once so it
works well in write-intensive scenarios. Reactive cloud [21]
uses post-copy to quickly react to sudden overloads. Scatter-
Gather VM migration [22] allows the fast eviction of a VM
when the destination host is resource constrained so that the
source host can be re-purposed. Although all approaches
mentioned reduce the amount of data transferred and total

00:00 05:00 10:00 15:00
Time (MM:SS)

Redis WSS

0

1500

3000

4500

6000

P
re

d
ic

te
d
 W

S
S

 (
M

B
)

Figure 9. Dynamic WSS tracking for a VM containing 1.5GB Redis
dataset. The Redis server is queried by an external YCSB client.

00:00 05:00 10:00 15:00

Time (MM:SS)

0

10000

20000

30000

O
p
e
ra

ti
o
n
s/

se
co

n
d

Figure 10. Performance of YCSB client querying the Redis server located
inside a VM whose reservation changes dynamically as in Figure 9.

migration time, they still require the transfer of the VM’s
entire memory state. Jo et.al. [23] eliminate the transfer
of cached pages from the source host, which are fetched
directly from the network-attached storage. Jettison [24]
proposes partial VM migration in which only the working
set of an idle VM is migrated to the destination to achieve
greater consolidation, while the remaining memory is slowly
demand-paged from the source. In contrast, Agile migration
eliminates the transfer of cold pages and leaves no residual
state at the source.

VMWare uses a per-VM swap device [4] shared between
the source and the destination hosts to avoid the transfer
of swapped out VM pages during the migration. However,
since the memory reservation for a VM remains fixed, the
cold pages residing in the main memory are also transferred
during the migration. This allows the VM to dirty even
more pages, which are re-transferred during the migration.
The problem becomes worse when the VM is running
a write-intensive workload because pre-copy rounds take
longer to converge. Even though an optimization of pre-
copy, called SDPS [25], slows down vCPUs to speed up
migration of write-intensive VMs, it degrades the application
performance further during migration [26]. In contrast, our
approach only retains the VM’s working set in the memory
and evicts all cold pages to the swap device. Further, we use
a hybrid of pre/post-copy to transfer the working set so that
migration remains agnostic to the workload type.

A number of techniques focus on detecting resource pres-
sures and alleviating them through VM migration, but none
adapt the migration technique specifically for agile response.
VMWare DRS [27] and SandPiper [28] monitor resource



usage at the host-level to detect hotspots which triggers
VM migration. Sandpiper [28] uses gray-box approaches to
detect and respond to increased resource usage - a Linux
OS daemon and Apache module installed in each VM read
information contained in application logs. Zhang et al. [29]
use access-bit scanning to estimate the working set of a VM.
Chiang et al. [30] propose resizing VMs according to their
working set sizes to increase consolidation. Overdriver [31]
proposes resolving transient hotspot with network memory
swap and sustained hotspots via migration.

VII. CONCLUSION

Traditional live migration approaches do not have the
agility necessary to quickly respond to resource pressures
since they transfer the entire memory of a VM. We presented
a new approach, called Agile VM migration, that can quickly
migrate a VM by transferring only the VM’s working set
and CPU state. During runtime, the hypervisor ensures that
only working set pages of each VM reside in memory and
cold (non-working-set) pages are evicted to a remote per-VM
swap device. During migration, only the resident working set
pages are transferred whereas the cold pages are retrieved
on-demand by the destination from the per-VM swap device.
In evaluations, Agile migration restores the migrating VM’s
performance the fastest and impacts the performance of co-
located VMs the least compared to pre-copy and post-copy.

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation through grants 1320689, 1527338, 0845832,
0855204, 1040666, and a US Department of Education
GAANN Fellowship.

REFERENCES

[1] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Ma-
chines,” in NSDI, 2005.

[2] M. Nelson, B. H. Lim, and G. Hutchins, “Fast Transparent
Migration for Virtual Machines,” in USENIX Annual Techni-
cal Conference, 2005.

[3] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live
migration of virtual machines,” SIGOPS Operating System
Review, vol. 43, no. 3, pp. 14–26, 2009.

[4] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubrama-
nian, “VMware ESX Memory Resource Management: Swap,”
in VMWare Technical Journal, 2014.

[5] U. Deshpande, B. Wang, S. Haque, M. Hines, and
K. Gopalan, “Memx: Virtualization of cluster-wide memory,”
in ICPP, 2010.

[6] M. Hines and K. Gopalan, “MemX: Supporting large memory
workloads in Xen virtual machines,” in Virtualization Tech-
nology in Distributed Computing (VTDC), Reno, NV, Nov.
2007.

[7] M. Hines, J. Wang, and K. Gopalan, “Distributed Anemone:
Transparent Low-Latency Access to Remote Memory in
Commodity Clusters,” in Proc. of the International Confer-
ence on High Performance Computing (HiPC), Dec. 2006.

[8] Memcached, http://memcached.org.

[9] Redis, Key-value Cache and Store, http://redis.io.
[10] K. Gopalan, M. Hines, and J. Wang, “Distributed adaptive

network memory engine,” Mar. 29 2011. [Online]. Available:
http://www.google.com/patents/US7917599

[11] Cgroups, “http://lxr.free-electrons.com/source/documentation
/cgroups/cgroups.txt.”

[12] Y. Zhao, “Per-cgroup swap file, http://lwn.net/articles/592923.”
[13] Sysbench, “http://sysbench.sourceforge.net/index.html.”
[14] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migra-

tion of virtual machines,” in HPDC, 2011.
[15] U. Deshpande, B. Schlinker, E. Adler, and K. Gopalan, “Gang

migration of virtual machines using cluster-wide deduplica-
tion,” in CCGrid, May 2013.

[16] S. A. Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
“Vmflock: Virtual machine co-migration for the cloud,” in
HPDC, June 2011.

[17] P. Riteau, C. Morin, and T. Priol, “Shrinker: Improving
live migration of virtual clusters over wans with distributed
data deduplication and content-based addressing,” in Proc. of
EURO-PAR, September 2011.

[18] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der
Merwe, “Cloudnet: Dynamic pooling of cloud resources by
live wan migration of virtual machines,” in VEE, 2011.

[19] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual
machine migration with adaptive, memory compression,” in
Proc. of Cluster Computing and Workshops, August 2009.

[20] P. Svard, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation
of delta compression techniques for efficient live migration of
large virtual machines,” in VEE, 2011.

[21] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Reactive
cloud: Consolidating virtual machines with postcopy live mi-
gration,” IPSJ Transactions on Advanced Computing Systems,
pp. 86–98, Mar. 2012.

[22] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan,
“Fast server deprovisioning through scatter-gather live migra-
tion of virtual machine,” in IEEE Cloud, July 2014.

[23] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live
migration of virtual machines using shared storage,” in VEE,
2013.

[24] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla,
M. Hiltunen, and M. Satyanarayanan, “Jettison: Efficient
Idle Desktop Consolidation with Partial VM Migration,” in
Eurosys, April 2012.

[25] VMWare Inc., VMware vSphere vMotion Architecture, Per-
formance and Best Practices in VMware vSphere 5,
https://www.vmware.com/files/pdf/vmotion-perf-vsphere5.pdf.

[26] VMWare Knowledge Base, Virtual machine performance
degrades while a vMotion is being performed,
http://kb.vmware.com/kb/2007595.

[27] VMWare Inc., “VMware DRS: Dy-
namic Scheduling of System Resources,
http://www.vmware.com/files/pdf/drs datasheet.pdf.”

[28] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Sandpiper: Black-box and gray-box resource management
for virtual machines,” Intl. Journal of Computer and Telecom-
munications Networking, vol. 53, no. 17, 2009.

[29] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr,
“Fast restore of checkpointed memory using working set
estimation,” in VEE, 2011.

[30] J. Chiang, H. Li, and T. Chiueh, “Working Set-based Physical
Memory Ballooning,” in ICAC, June 2013.

[31] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon,
“Overdriver: handling memory overload in an oversubscribed
cloud,” in VEE, 2011.


